One‐dimensional infiltration experiments were conducted to study the mechanics of unstable flow in homogeneous soils under non‐ponding infiltration. A mechanistic model is presented which explains soil water pressure gradients that are characteristic of stable and unstable flow in homogeneous soils and is based on a dynamic soil water entry pressure, the Darcy‐Buckingham flux equation, and hysteretic moisture retention functions. Infiltration experiments were conducted with five sand samples under applied fluxes of 2, 5, 20, and 50% of their saturated hydraulic conductivity. Soil water pressures were measured at fixed depths following passage of the wetting front. A trend of decreasing soil water pressure over time following passage of the wetting front is not predicted by Richards' equation and produces unstable flow. Under air‐dry initial soil water conditions, soil water pressures were unstable for all fluxes in the three coarser sands. In the two finer sands, unstable flow occurred at infiltration rates of 20 and 50% of their respective saturated hydraulic conductivities but stable flow occurred at lower fluxes. Soil water pressure measured just behind the wetting front was found to be an increasing function of applied flux and average grain size of the media for infiltration with air‐dry initial soil water content. Additional tests showed that systems that produced unstable flow under air‐dry initial soil water contents exhibited stable flow during infiltration with initial soil water contents that were greater than air dry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.