Summary Atmospheric carbon dioxide concentration ([CO2]) is increasing, which increases leaf‐scale photosynthesis and intrinsic water‐use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2]‐driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2] (iCO2) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre‐industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
Transgenic down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been reported as a means for reducing lignin content in cell walls and increasing overall growth rates, thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplar (Populus tremula 3 Populus alba), we applied this strategy and examined field-grown transformants for both effects on wood biochemistry and tree productivity. The reductions in lignin contents obtained correlated well with 4CL RNA expression, with a sharp decrease in lignin amount being observed for RNA expression below approximately 50% of the nontransgenic control. Relatively small lignin reductions of approximately 10% were associated with reduced productivity, decreased wood syringyl/guaiacyl lignin monomer ratios, and a small increase in the level of incorporation of H-monomers (p-hydroxyphenyl) into cell walls. Transgenic events with less than approximately 50% 4CL RNA expression were characterized by patches of reddish-brown discolored wood that had approximately twice the extractive content of controls (largely complex polyphenolics). There was no evidence that substantially reduced lignin contents increased growth rates or saccharification potential. Our results suggest that the capacity for lignin reduction is limited; below a threshold, large changes in wood chemistry and plant metabolism were observed that adversely affected productivity and potential ethanol yield. They also underline the importance of field studies to obtain physiologically meaningful results and to support technology development with transgenic trees.Composed of diverse layers of cellulose microfibrils and amorphous hemicelluloses within a matrix of pectins, proteins, and lignin, the secondary cell walls of plants are diverse in their morphology, chemistry, and physiological functions. Lignification is of particular interest, as it exhibits highly predictable temporal and spatial patterning and is the last major step in the structural reinforcement of cell walls before the protoplast is dissolved (Donaldson, 2001
Summary• Coniferous, diffuse-porous and ring-porous trees vary in their xylem anatomy, but the functional consequences of these differences are not well understood from the scale of the conduit to the individual.• Hydraulic and anatomical measurements were made on branches and trunks from 16 species from temperate and tropical areas, representing all three wood types. Scaling of stem conductivity (K h ) with stem diameter was used to model the hydraulic conductance of the stem network.• Ring-porous trees showed the steepest increase in K h with stem size. Temperate diffuse-porous trees were at the opposite extreme, and conifers and tropical diffuse-porous species were intermediate. Scaling of K h was influenced by differences in the allometry of conduit diameter (taper) and packing (number per wood area) with stem size.• The K h trends were mirrored by the modeled stem-network conductances. Ringporous species had the greatest network conductance and this value increased isometrically with trunk basal area, indicating that conductance per unit sapwood was independent of tree size. Conductances were lowest and most size-dependent in conifers. The results indicate that differences in conduit taper and packing between functional types propagate to the network level and have an important influence on metabolic scaling concepts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.