Although there are several works on providing event-based services in pervasive environment or WSN, most of them have not considered composite event detection in an energy-efficient fashion. Composite events consist of multiple primitive events with temporal and spatial relations and are much more difficult to manage. Because of the resource constraints in WSN, existing event detection algorithms may not be suitable for WSN when energy efficiency is considered. In this paper, we propose TED (Type-based composite Event Detection), a distributed composite event detection algorithm. The essential idea of TED is type-based event fusion, where some sensor nodes are selected as fusion points. Then lower-level events will be fused on these fusion points for detection of higher-level composite events. Each composite event type is assigned to certain fusion point for detection so that the composite events may be detected in-network instead of at the sink. Event fusion with minimum energy cost is an NP-complete problem. We propose a distributed randomized algorithm to solve the problem. We analyze the energy efficiency of TED to show both its effectiveness and efficiency. By carrying out both simulation and real world experiments on TED, we show that TED can reduce the energy cost by 10-20% in event-based WSN applications compared with naïve event detection mechanism where the event relations are not considered.
The aim of this paper is to conduct experimental modal analysis and numerical simulation to verify the structural characteristics of a deployable-retractable wing for aircraft and spacecraft. A modal impact test was conducted in order to determine the free vibration characteristics. Natural frequencies and vibration mode shapes were obtained via measurement in LMS Test. Lab. The frequency response functions were identified and computed by force and acceleration signals, and then mode shapes of this morphing wing structure were subsequently identified by PolyMAX modal parameter estimation method. FEM modal analysis was also implemented and its numerical results convincingly presented the mode shape and natural frequency characteristics were in good agreement with those obtained from experimental modal analysis. Experimental study in this paper focuses on the transverse response of morphing wing as its moveable part is deploying or retreating. Vibration response to different rotation speeds have been collected, managed and analyzed through the use of comparison methodology with each other. Evident phenomena have been discovered including the resonance on which most analysis is focused because of its potential use to generate large amplitude vibration of specific frequency or to avoid such resonant frequencies from a wide spectrum of response. Manufactured deployable-retractable wings are studied in stage of experimental modal analysis, in which some nonlinear vibration resulted should be particularly noted because such wing structure displays a low resonant frequency which is always optimal to be avoided for structural safety and stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.