This paper is the second part of a two-part research effort to find the optimal detector and estimator that minimise the integrity risk in Receiver Autonomous Integrity Monitoring (RAIM). Part 1 shows that for realistic navigation requirements, the solution separation RAIM method can approach the optimal detection region when using a least-squares estimator. This paper constitutes Part 2. It presents new methods to design Non-Least-Squares (NLS) estimators, which, in exchange for a slight increase in nominal positioning error, can substantially lower the integrity risk. A first method is formulated as a multi-dimensional minimisation problem, which directly minimises integrity risk, but can only be solved using a time-consuming iterative process. Parity space representations are then exploited to develop a computationally-efficient, near-optimal NLS-estimator-design method. Performance analyses for an example multi-constellation Advanced RAIM (ARAIM) application show that this new method enables significant integrity risk reduction in real-time implementations where computational resources are limited. K E Y WO R D S 1. RAIM.2. Risk Minimisation.
This paper describes the first of a two-part research effort to find the optimal detector and estimator that minimise the integrity risk in Receiver Autonomous Integrity Monitoring (RAIM). In this first part, a new method is established to determine a piecewise linear approximation of the optimal detection region in parity space. The paper presents examples suggesting that the optimal detection boundary lays in between that obtained using chi-squared residual-based RAIM, and that provided by Solution Separation (SS) RAIM, as one varies the alert limit requirement. In addition, these examples indicate that for realistic navigation requirements, the SS RAIM method approaches the optimal detection region. The SS RAIM detection tests will be employed in the second part of this work, which focuses on the design of non-least-squares estimators to reduce the integrity risk in exchange for a slight increase in nominal positioning error. K E Y WO R D S 1. RAIM.2. Risk minimisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.