Objective: To describe the application of 3-dimensional (3D) printing in advanced oral and maxillofacial surgery (OMFS) and to discuss the benefits of this modality in surgical planning, student and resident training, and client education.Study design: Retrospective case series.Animals: Client-owned dogs (n 5 28) and cats (n 5 4) with 3D printing models of the skulls. Methods:The medical records of 32 cases with 3D printing prior to major OMFS were reviewed.Results: Indications for 3D printing included preoperative planning for mandibular reconstruction after mandibulectomy (n 5 12 dogs) or defect nonunion fracture (n 5 6 dogs, 2 cats), mapping of ostectomy location for temporomandibular joint ankylosis or pseudoankylosis (n 5 4 dogs), assessment of palatal defects (n 5 2 dogs, 1 cat), improved understanding of complex anatomy in cases of neoplasia located in challenging locations (n 5 2 dogs, 1 cat), and in cases of altered anatomy secondary to trauma (n 5 2 dogs). Conclusion:In the authors' experience, 3D printed models serve as excellent tools for OMFS planning and resident training. Furthermore, 3D printed models are a valuable resource to improve clients' understanding of the pet's disorder and the recommended treatment.Clinical relevance: Three-dimensional printed models should be considered viable tools for surgical planning, resident training, and client education in candidates for complex OMFS.
Traditionally, head fixation devices and recording cylinders have been implanted in nonhuman primates (NHP) using dental acrylic despite several shortcomings associated with acrylic. The use of more biocompatible materials such as titanium and PEEK is becoming more prevalent in NHP research. We describe a cost-effective set of procedures that maximizes the integration of headposts and recording cylinders with the animal's tissues while reducing surgery time. Nine rhesus monkeys were implanted with titanium headposts, and one of these was also implanted with a recording chamber. In each case, a three-dimensional printed replica of the skull was created based on computerized tomography scans. The titanium feet of the headposts were shaped, and the skull thickness was measured preoperatively, reducing surgery time by up to 70%. The recording cylinder was manufactured to conform tightly to the skull, which was fastened to the skull with four screws and remained watertight for 8.5 mo. We quantified the amount of regression of the skin edge at the headpost. We found a large degree of variability in the timing and extent of skin regression that could not be explained by any single recorded factor. However, there was not a single case of bone exposure; although skin retracted from the titanium, skin also remained adhered to the skull adjacent to those regions. The headposts remained fully functional and free of complications for the experimental life of each animal, several of which are still participating in experiments more than 4 yr after implant. Cranial implants are often necessary for performing neurophysiology research with nonhuman primates. We present methods for using three-dimensional printed monkey skulls to form and fabricate acrylic-free implants preoperatively to decrease surgery times and the risk of complications and increase the functional life of the implant. We focused on reducing costs, creating a feasible timeline, and ensuring compatibility with existing laboratory systems. We discuss the importance of using more biocompatible materials and enhancing osseointegration.
Purpose Deformable lung phantoms have been proposed to investigate four‐dimensional (4D) imaging and radiotherapy delivery techniques. However, most phantoms mimic only the lung and tumor without pulmonary airways. The purpose of this study was to develop a reproducible, deformable lung phantom with three‐dimensional (3D)‐printed airways. Methods The phantom consists of: (a) 3D‐printed flexible airways, (b) flexible polyurethane foam infused with iodinated contrast agents, and (c) a motion platform. The airways were simulated using publicly available breath‐hold computed tomography (CT) image datasets of a human lung through airway segmentation, computer‐aided design modeling, and 3D printing with a rubber‐like material. The lung was simulated by pouring liquid expanding foam into a mold with the 3D‐printed airways attached. Iodinated contrast agents were infused into the lung phantom to emulate the density of the human lung. The lung/airways phantom was integrated into our previously developed motion platform, which allows for compression and decompression of the phantom in the superior–inferior direction. We quantified the reproducibility of the density (lung), motion/deformation (lung and airways), and position (airways) using breath‐hold CT scans (with the phantom compressed and decompressed) repeated every two weeks over a 2‐month period as well as 4D CT scans (with the phantom continuously compressed and decompressed) repeated twice over four weeks. The density reproducibility was quantified with a difference image (created by subtracting the rigidly registered baseline and the repeated images) in each of the compressed and decompressed states. Reproducibility of the motion/deformation was evaluated by comparing the baseline displacement vector fields (DVFs) derived from deformable image registration (DIR) between the compressed and decompressed phantom CT images with those of repeated scans and calculating the difference in the displacement vectors. Reproducibility of the airway position was quantified based on DIR between the baseline and repeated images. Results For the breath‐hold CT scans, the mean difference in lung density between baseline and week 8 was −1.3 (standard deviation 33.5) Hounsfield unit (HU) in the compressed state and 0.4 (36.8) HU in the decompressed state, while large local differences were observed around the high‐contrast structures (caused by small misalignments). By visual inspection, the DVFs (between the compressed and decompressed states) at baseline and last time point (week 8 for the breath‐hold CT scans) demonstrated a similar pattern. The mean lengths of displacement vector differences between baseline and week 8 were 0.5 (0.4) mm for the lung and 0.3 (0.2) mm for the airways. The mean airway displacements between baseline and week 8 were 0.6 (0.5) mm in the compressed state and 0.6 (0.4) mm in the decompressed state. We also observed similar results for the 4D CT scans (week 0 vs week 4) as well as for the breath‐hold CT scans at other time points (week 0 vs weeks 2, 4, a...
Three dimensional (3D) scanning and printing technology is utilized to create phantom models of mice in order to assess the accuracy of ionizing radiation dosing from a clinical, human-based linear accelerator. Phantoms are designed to simulate a range of research questions, including irradiation of lung tumors and primary subcutaneous or orthotopic tumors for immunotherapy experimentation. The phantoms are used to measure the accuracy of dose delivery and then refine it to within 1% of the prescribed dose.
Ultrasound-induced thermal strain imaging (US-TSI) for carotid artery plaque detection requires both high imaging resolution (<100 μm) and sufficient US induced heating to elevate the tissue temperature (~1-3°C within 1-3 cardiac cycles) in order to produce a noticeable change in sound speed in the targeted tissues. Since the optimization of both imaging and heating in a monolithic array design is particularly expensive and inflexible, a new integrated approach is presented that utilizes independent ultrasound arrays to meet the requirements for this particular application. This work demonstrates a new approach in dual-array construction. A 3D printed manifold was built to support both a high resolution 20 MHz commercial imaging array and 6 custom heating elements operating in the 3.5-4 MHz range. For the application of US-TSI on carotid plaque characterization, the tissue target site is 20 to 30 mm deep, with a typical target volume of 2 mm (elevation) × 8 mm (azimuthal) × 5 mm (depth). The custom heating array performance was fully characterized for two design variants (flat and spherical apertures), and can easily deliver 30 W of total acoustic power to produce intensities greater than 15 W/cm2 in tissue target region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.