One of the remaining "grand challenges" in chemistry is the development of a next generation, less expensive, cleaner process that can allow the vast reserves of methane from natural gas to augment or replace oil as the source of fuels and chemicals. Homogeneous (gas/liquid) systems that convert methane to functionalized products with emphasis on reports after 1995 are reviewed. Gas/solid, bioinorganic, biological, and reaction systems that do not specifically involve methane functionalization are excluded. The various reports are grouped under the main element involved in the direct reactions with methane. Central to the review is classification of the various reports into 12 categories based on both practical considerations and the mechanisms of the elementary reactions with methane. Practical considerations are based on whether or not the system reported can directly or indirectly utilize O as the only net coreactant based only on thermodynamic potentials. Mechanistic classifications are based on whether the elementary reactions with methane proceed by chain or nonchain reactions and with stoichiometric reagents or catalytic species. The nonchain reactions are further classified as CH activation (CHA) or CH oxidation (CHO). The bases for these various classifications are defined. In particular, CHA reactions are defined as elementary reactions with methane that result in a discrete methyl intermediate where the formal oxidation state (FOS) on the carbon remains unchanged at -IV relative to that in methane. In contrast, CHO reactions are defined as elementary reactions with methane where the carbon atom of the product is oxidized and has a FOS less negative than -IV. This review reveals that the bulk of the work in the field is relatively evenly distributed across most of the various areas classified. However, a few areas are only marginally examined, or not examined at all. This review also shows that, while significant scientific progress has been made, greater advances, particularly in developing systems that can utilize O, will be required to develop a practical process that can replace the current energy and capital intensive natural gas conversion process. We believe that this classification scheme will provide the reader with a rapid way to identify systems of interest while providing a deeper appreciation and understanding, both practical and fundamental, of the extensive literature on methane functionalization. The hope is that this could accelerate progress toward meeting this "grand challenge."
In an effort to augment or displace petroleum as a source of liquid fuels and chemicals, researchers are seeking lower cost technologies that convert natural gas (largely methane) to products such as methanol. Current methane to methanol technologies based on highly optimized, indirect, high-temperature chemistry (>800 °C) are prohibitively expensive. A new generation of catalysts is needed to rapidly convert methane and O(2) (ideally as air) directly to methanol (or other liquid hydrocarbons) at lower temperatures (~250 °C) and with high selectivity. Our approach is based on the reaction between CH bonds of hydrocarbons (RH) and transition metal complexes, L(n)M-X, to generate activated L(n)M-R intermediates while avoiding the formation of free radicals or carbocations. We have focused on the incorporation of this reaction into catalytic cycles by integrating the activation of the CH bond with the functionalization of L(n)M-R to generate the desired product and regenerate the L(n)M-X complex. To avoid free-radical reactions possible with the direct use of O(2), our approach is based on the use of air-recyclable oxidants. In addition, the solvent serves several roles including protection of the product, generation of highly active catalysts, and in some cases, as the air-regenerable oxidant. We postulate that there could be three distinct classes of catalyst/oxidant/solvent systems. The established electrophilic class combines electron-poor catalysts in acidic solvents that conceptually react by net removal of electrons from the bonding orbitals of the CH bond. The solvent protects the CH(3)OH by conversion to more electron-poor [CH(3)OH(2)](+) or the ester and also increases the electrophilicity of the catalyst by ligand protonation. The nucleophilic class matches electron-rich catalysts with basic solvents and conceptually reacts by net donation of electrons to the antibonding orbitals of the CH bond. In this case, the solvent could protect the CH(3)OH by deprotonation to the more electron-rich [CH(3)O](-) and increases the nucleophilicity of the catalysts by ligand deprotonation. The third grouping involves ambiphilic catalysts that can conceptually react with both the HOMO and LUMO of the CH bond and would typically involve neutral reaction solvents. We call this continuum base- or acid-modulated (BAM) catalysis. In this Account, we describe our efforts to design catalysts following these general principles. We have had the most success with designing electrophilic systems, but unfortunately, the essential role of the acidic solvent also led to catalyst inhibition by CH(3)OH above ~1 M. The ambiphilic catalysts reduced this product inhibition but were too slow and inefficient. To date, we have designed new base-assisted CH activation and L(n)M-R fuctionalization reactions and are working to integrate these into a complete, working catalytic cycle. Although we have yet to design a system that could supplant commercial processes, continued exploration of the BAM catalysis continuum may lead to new systems that ...
Much of the recent research on homogeneous alkane oxidation has focused on the use of transition metal catalysts. Here, we report that the electrophilic main-group cations thallium(III) and lead(IV) stoichiometrically oxidize methane, ethane, and propane, separately or as a one-pot mixture, to corresponding alcohol esters in trifluoroacetic acid solvent. Esters of methanol, ethanol, ethylene glycol, isopropanol, and propylene glycol are obtained with greater than 95% selectivity in concentrations up to 1.48 molar within 3 hours at 180°C. Experiment and theory support a mechanism involving electrophilic carbon-hydrogen bond activation to generate metal alkyl intermediates. We posit that the comparatively high reactivity of these d(10) main-group cations relative to transition metals stems from facile alkane coordination at vacant sites, enabled by the overall lability of the ligand sphere and the absence of ligand field stabilization energies in systems with filled d-orbitals.
Designing oxidation catalysts based on CH activation with reduced, low oxidation state species is a seeming dilemma given the proclivity for catalyst deactivation by overoxidation. This dilemma has been recognized in the Shilov system where reduced PtII is used to catalyze methane functionalization. Thus, it is generally accepted that key to replacing PtIV in that system with more practical oxidants is ensuring that the oxidant does not over-oxidize the reduced PtII species. The “Periana-Catalytica” system, which utilizes (bpym)PtIICl2 in concentrated sulfuric acid solvent at 200 °C, is a highly stable catalyst for the selective, high yield oxy-functionalization of methane. In lieu of the over-oxidation dilemma, the high stability and observed rapid oxidation of (bpym)PtIICl2 to PtIV in the absence of methane would seem to contradict the originally proposed mechanism involving CH activation by a reduced PtII species. Mechanistic studies show that the originally proposed mechanism is incomplete and that while CH activation does proceed with PtII there is a solution to the over-oxidation dilemma. Importantly, contrary to the accepted view to minimize PtII overoxidation, these studies also show that increasing that rate could increase the rate of catalysis and catalyst stability. The mechanistic basis for this counterintuitive prediction could help to guide the design of new catalysts for alkane oxidation that operate by CH activation.
Computational design of molecular homogeneous organometallic catalysts followed by experimental realization remains a significant challenge. Here, we report the development and use of a density functional theory transition-state model that provided quantitative prediction of molecular Cr catalysts for controllable selective ethylene trimerization and tetramerization. This computational model identified a general class of phosphine monocyclic imine (P,N)-ligand Cr catalysts where changes in the ligand structure control 1-hexene versus 1-octene selectivity. Experimental ligand and catalyst synthesis as well as reaction testing quantitatively confirmed predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.