The identification of thrombospondin-1 as an angiogenesis inhibitor in 1990 prompted interest in its role in cancer biology and potential as a therapeutic target. Decreased thrombospondin-1 mRNA and protein expression are associated with progression in several cancers, while expression by nonmalignant cells in the tumor microenvironment and circulating levels in cancer patients can be elevated. THBS1 is not a tumor suppressor gene, but the regulation of its expression in malignant cells by oncogenes and tumor suppressor genes mediates some of their effects on carcinogenesis, tumor progression, and metastasis. In addition to regulating angiogenesis and perfusion of the tumor vasculature, thrombospondin-1 limits antitumor immunity by CD47-dependent regulation of innate and adaptive immune cells. Conversely, thrombospondin-1 is a component of particles released by immune cells that mediate tumor cell killing. Thrombospondin-1 differentially regulates the sensitivity of malignant and nonmalignant cells to genotoxic stress caused by radiotherapy and chemotherapy. The diverse activities of thrombospondin-1 to regulate autophagy, senescence, stem cell maintenance, extracellular vesicle function, and metabolic responses to ischemic and genotoxic stress are mediated by several cell surface receptors and by regulating the functions of several secreted proteins. This review highlights progress in understanding thrombospondin-1 functions in cancer and the challenges that remain in harnessing its therapeutic potential.
Obesity and poor diet often go hand-in-hand, altering metabolic signaling and thereby impacting breast cancer risk and outcomes. We have recently demonstrated that dietary patterns modulate mammary microbiota populations. An important and largely open question is whether the microbiome of the gut and mammary gland mediates the dietary effects on breast cancer. To address this, we performed fecal transplants between mice on control or high-fat diets (HFD) and recorded mammary tumor outcomes in a chemical carcinogenesis model. HFD induced protumorigenic effects, which could be mimicked in animals fed a control diet by transplanting HFD-derived microbiota. Fecal transplants altered both the gut and mammary tumor microbiota populations, suggesting a link between the gut and breast microbiomes. HFD increased serum levels of bacterial lipopolysaccharide (LPS), and control diet–derived fecal transplant reduced LPS bioavailability in HFD-fed animals. In vitro models of the normal breast epithelium showed that LPS disrupts tight junctions (TJ) and compromises epithelial permeability. In mice, HFD or fecal transplant from animals on HFD reduced expression of TJ-associated genes in the gut and mammary gland. Furthermore, infecting breast cancer cells with an HFD-derived microbiome increased proliferation, implicating tumor-associated bacteria in cancer signaling. In a double-blind placebo-controlled clinical trial of patients with breast cancer administered fish oil supplements before primary tumor resection, dietary intervention modulated the microbiota in tumors and normal breast tissue. This study demonstrates a link between the gut and breast that mediates the effect of diet on cancer. Significance: This study demonstrates that diet shifts the microbiome in the gut and the breast tumor microenvironment to affect tumorigenesis, and oral dietary interventions can modulate the tumor microbiota in patients with breast cancer.
Expression of immune checkpoint proteins restrict immunosurveillance in the tumor microenvironment; thus, FDA-approved checkpoint inhibitor drugs, specifically PD-1/PD-L1 and CTLA-4 inhibitors, promote a cytotoxic antitumor immune response. Aside from inflammatory signaling, immune checkpoint proteins invoke metabolic reprogramming that affects immune cell function, autonomous cancer cell bioenergetics, and patient response. Therefore, this review will focus on the metabolic alterations in immune and cancer cells regulated by currently approved immune checkpoint target proteins and the effect of costimulatory receptor signaling on immunometabolism. Additionally, we explore how diet and the microbiome impact immune checkpoint blockade therapy response. The metabolic reprogramming caused by targeting these proteins is essential in understanding immune-related adverse events and therapeutic resistance. This can provide valuable information for potential biomarkers or combination therapy strategies targeting metabolic pathways with immune checkpoint blockade to enhance patient response.
Thrombospondin-1 (TSP1) is a matricellular protein with many important roles in mediating carcinogenesis, fibrosis, leukocyte recruitment, and metabolism. We have previously shown a role of diet in the absence of TSP1 in liver metabolism in the context of a colorectal cancer model. However, the metabolic implications of TSP1 regulation by diet in the liver metabolism are currently understudied. Therefore Discrete correlation summation (DCS) was used to re-interrogate data and determine the metabolic alterations of TSP1 deficiency in the liver, providing new insights into the role of TSP1 in liver injury and the progression of liver pathologies such as nonalcoholic fatty liver disease (NAFLD). DCS analysis provides a straightforward approach to rank covariance and data clustering when analyzing complex data sets. Using this approach, our previous liver metabolite data was re-analyzed by comparing wild-type (WT) and Thrombospondin-1 null (Thbs1−/−) mice, identifying changes driven by genotype and diet. Principal component analysis showed clustering of animals by genotype regardless of diet, indicating that TSP1 deficiency alters metabolite handling in the liver. High-fat diet consumption significantly altered over 150 metabolites in the Thbs1−/− livers versus approximately 90 in the wild-type livers, most involved in amino acid metabolism. The absence of Thbs1 differentially regulated tryptophan and tricarboxylic acid cycle metabolites implicated in the progression of NAFLD. Overall, the lack of Thbs1 caused a significant shift in liver metabolism with potential implications for liver injury and the progression of NAFLD.
Colonic volvulus is an uncommon, often life‐threatening condition, in non‐human primates. Twenty‐six cases of colonic volvulus in rhesus macaques (Macaca mulatta) were identified in necropsy records spanning 38 years at the Oregon National Primate Research Center (ONPRC). This report represents the largest collection of colonic volvuli in rhesus macaques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.