Seed dispersal is a crucial process in most plant invasions, but is notoriously difficult to study. One technique to identify the maternal source of dispersed seeds and newly established seedlings is labeling with a stable isotope. We tested whether foliar application of 15N-labeled urea would result in sufficient 15N enrichment to discriminate among seeds and seedlings grown from those seeds of the invasive shrub Lonicera maackii (Amur honeysuckle). We subjected mature L. maackii to all combinations of three concentrations of 15N-labeled urea (0.025 g L−1 [0.003 oz gal−1], 0.20 g L−1, and a 0 g L−1 control) and three temporal treatments (one application in August, one application in September, and five applications spaced every three weeks from June through August). Seeds were collected September to November; some of these were analyzed for %15N and others allowed to germinate and grow into seedlings under two treatments (in potting mix in greenhouse and in woodlot soil outdoors). Seedlings were harvested midway through the next growing season. We found that seeds from plants subjected to the three different concentrations had significantly different %15N levels, and there was a significant interaction between concentration and temporal treatment: the highest seed %15N levels were from plants sprayed five times with 15N-labeled urea, and the second highest from plants sprayed once in September. Similar patterns in %15N levels were found in seedlings, except that those from the 0.025 g L−1 spray treatment were only distinguishable from controls for seedlings grown outdoors in woodlot soil. These findings demonstrate that a single foliar application of 15N in early September is sufficient to label both seeds and seedlings of this invasive shrub, enabling one to identify the source of field-collected seeds or seedlings. This provides a tool for studying patterns and processes in seed dispersal of Amur honeysuckle and potentially other invasive plants.
To investigate the relative importance of long-distance dispersal vs. diffusion in the invasion of a nonnative plant, we used age structure to infer the contribution to recruitment of external propagule rain vs. within-population reproduction. We quantified the age structure of 14 populations of Amur honeysuckle in a landscape where it recently invaded, in Darke County, OH. We sampled the largest honeysuckle individuals in each population (woodlots), and aged these by counting annual rings in stem cross sections. Individuals in the oldest four 1-yr age classes are assumed to be from external recruitment, given the minimum age at which shrubs reproduce. We used these recruitment rates to model external recruitment over the next 5 yr and used observed age structures to estimate total recruitment. We used the difference between total and external recruitment to infer the rate of internal recruitment. Our findings indicate that recruitment from within the population is of about the same magnitude as immigration in the fifth to seventh year after population establishment, but by years 8 to 9 internal recruitment dominates. At the landscape scale, the temporal-spatial pattern of population establishment supports a stratified dispersal model, with the earliest populations establishing in widely spaced woodlots, about 4 km from existing populations, and these serving as “nascent foci” for diffusion to nearby woodlots. Understanding the relative importance of long-distance dispersal vs. diffusion will inform management, e.g., whether it is more effective to scout for isolated shrubs or remove reproducing shrubs at the edge of invaded areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.