Keratoconus is associated with significantly impaired V-QoL that continues to decline over time. For a substantial plurality of patients, these declines are significant.
CT and PET are widely used to characterize solitary pulmonary nodules (SPNs). However, most CT accuracy studies have been performed with outdated technology and methods, and previous PET studies have been limited by small sample sizes and incomplete masking. Our objective was to compare CT and PET accuracy in veterans with SPN. Methods: Between January 1999 and June 2001, we recruited 532 participants with SPNs newly diagnosed on radiography and untreated. The SPNs were 7-30 mm. All patients underwent 18 F-FDG PET and CT. A masked panel of 3 PET and 3 CT experts rated the studies on a 5-point scale. SPN tissue diagnosis or 2-y follow-up established the final diagnosis. Results: A definitive diagnosis was established for 344 participants. The prevalence of malignancy was 53%. The average size was 16 mm. Likelihood ratios (LRs) for PET and CT results for combined ratings of either definitely benign (33% and 9% of patients, respectively) or probably benign (27% and 12%) were 0.10 and 0.11, respectively. LRs for PET and CT results for combined ratings of indeterminate (1% and 25%), probably malignant (21% and 39%), or definitely malignant (35% and 15%) were 5.18 and 1.61, respectively. Area under the receiver operating characteristic curve was 0.93 (95% confidence interval, 0.90-0.95) for PET and 0.82 (95% confidence interval, 0.77-0.86) for CT (P , 0.0001 for the difference). PET inter-and intraobserver reliability was superior to CT. Conclusion: Definitely and probably benign results on PET and CT strongly predict benign SPN. However, such results were 3 times more common with PET. Definitely malignant results on PET were much more predictive of malignancy than were these results on CT. A malignant final diagnosis was approximately 10 times more likely than a benign final diagnosis in participants with PET results rated definitely malignant.
Aims
To determine whether complement factor H (CFH) genotypes have a pharmacogenetic effect on the treatment of exudative age-related macular degeneration (AMD) with ranibizumab.
Methods
A retrospective study of 156 patients with exudative AMD treated with intravitreal ranibizumab monotherapy was conducted. AMD phenotypes were characterized by clinical examination, visual acuity, fundus photography, fluorescein angiography, and injection timing. Patients received intravitreal ranibizumab injections as part of routine ophthalmologic care and were followed for a minimum of nine months. Each patient was genotyped for the single nucleotide polymorphism rs1061170 (Y402H) in the CFH gene.
Results
Baseline lesion size and angiographic type, as well as mean visual acuities at baseline, 6 months, and 9 months were similar among the three CFH genotypes. Over 9 months, patients with both risk alleles received approximately one more injection (p = 0.09). In a recurrent event analysis, patients homozygous for the CFH Y402H risk allele had a 37% significantly higher risk of requiring additional ranibizumab injections (p = 0.04)
Conclusions
In our cohort, response to treatment of AMD with ranibizumab differed according to CFH genotype, suggesting that determining patients' CFH genotype may be helpful in the future in tailoring treatment for exudative AMD with intravitreal ranibizumab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.