Aim The exotic annual cheatgrass (Bromus tectorum) is fast replacing sagebrush (Artemisia tridentata) communities throughout the Great Basin Desert and nearby regions in the Western United States, impacting native plant communities and altering fire regimes, which contributes to the long‐term persistence of this weedy species. The effect of this conversion on native faunal communities remains largely unexamined. We assess the impact of conversion from native perennial to exotic annual plant communities on desert rodent communities. Location Wyoming big sagebrush shrublands and nearby sites previously converted to cheatgrass‐dominated annual grasslands in the Great Basin Desert, Utah, USA. Methods At two sites in Tooele County, Utah, USA, we investigated with Sherman live trapping whether intact sagebrush vegetation and nearby converted Bromus tectorum‐dominated vegetation differed in rodent abundance, diversity and community composition. Results Rodent abundance and species richness were considerably greater in sagebrush plots than in cheatgrass‐dominated plots. Nine species were captured in sagebrush plots; five of these were also trapped in cheatgrass plots, all at lower abundances than in the sagebrush. In contrast, cheatgrass‐dominated plots had no species that were not found in sagebrush. In addition, the site that had been converted to cheatgrass longer had lower abundances of rodents than the site more recently converted to cheatgrass‐dominated plots. Despite large differences in abundances and species richness, Simpson’s D diversity and Shannon‐Wiener diversity and Brillouin evenness indices did not differ between sagebrush and cheatgrass‐dominated plots. Main conclusions This survey of rodent communities in native sagebrush and in converted cheatgrass‐dominated vegetation suggests that the abundances and community composition of rodents may be shifting, potentially at the larger spatial scale of the entire Great Basin, where cheatgrass continues to invade and dominate more landscape at a rapid rate.
Sagebrush ecosystems in the intermountain west of the United States are being threatened by conversion to the non-native grass, cheatgrass (Bromus tectorum). The dramatic shift in the physical structure of vegetation coincident with cheatgrass invasion likely has negative impacts on animal communities, yet these structural impacts have not been well-studied. In a previous study, dense cheatgrass stems reduced sprint velocity for the flattened, wide-bodied desert horned lizard (Phrynosoma platyrhinos). Here, we asked if a decrease in sprint velocity due to cheatgrass impediment can be generalized to the suite of small vertebrates inhabiting the sagebrush ecosystems of western Utah. We evaluated sprint performance of the common rodent (n = 3) and lizard (n = 4) species on two raceway types, cheatgrass and no-cheatgrass, and hypothesized that body size, body shape, and form of movement are important factors influencing sprint velocity through dense cheatgrass stems. All species showed significant reductions in speed on cheatgrass versus no-cheatgrass raceways, with percent reduction greatest for larger, wider, or hopping organisms compared to smaller, more slender, or running organisms. Of concern, surveys for rodents and lizards at our study areas support a common pattern: lower abundances of small vertebrates, as well as a loss of rodent species richness, in areas infested with cheatgrass compared to intact, native sagebrush communities. By extension, we expect a negative impact on animal communities in other semi-arid regions experiencing dramatic shifts in vegetation structure upon invasion by non-native grasses that are capable of forming dense stands in the interspaces of native desert plants [e.g., Sonoran desert invaded by buffelgrass (Pennisetum ciliare)].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.