The structure of the first oxygenated intermediate on the taxol pathway establishes that the hydroxylation reaction proceeds with an unusual double bond migration that limits the mechanistic possibilities for subsequent elaboration of the oxetane moiety of taxol. The reaction is catalyzed by a cytochrome P450, suggesting that the seven remaining oxygenation steps in taxol biosynthesis may involve similar catalysts. Because the first oxygenation step is slow relative to subsequent metabolic transformations, it may be possible to speed taxol biosynthesis by isolating and manipulating the gene for the taxadiene-5-hydroxylase that catalyzes this reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.