Synaptic junctions (SJs) from rat forebrain were isolated at increasing postnatal ages and examined for endogenous protein kinase activities. Our studies focused on the postnatal maturation of the multifunctional protein kinase designated Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II). This kinase is comprised of a major 50-kilodalton (kDa) and a minor 60-kDa subunit. Experiments examined the developmental properties of CaM-kinase II associated with synaptic plasma membranes (SPMs) and synaptic junctions (SJs), as well as the holoenzyme purified from cytosolic extracts. Large developmental increases in CaM-kinase II activity of SJ fractions were observed between postnatal days 6 and 20; developmental changes were examined for a number of properties including (a) autophosphorylation, (b) endogenous substrate phosphorylation, (c) exogenous substrate phosphorylation, and (d) immunoreactivity. Results demonstrated that forebrain CaM-kinase II undergoes a striking age-dependent change in subunit composition. In early postnatal forebrain the 60-kDa subunit constitutes the major catalytic and immunoreactive subunit of the holoenzyme. The major peak of CaM-kinase II activity in SJ fractions occurred at approximately postnatal day 20, a time near the end of the most active period of in vivo synapse formation. Following this developmental age, CaM-kinase II continued to accumulate at SJs; however, its activity was not as highly activated by Ca2+ plus calmodulin.
Previous studies have purified from brain a Ca2+/calmodulin-dependent protein kinase II (designated CaM-kinase II) that phosphorylates synapsin I, a synaptic vesicle-associated phosphoprotein. CaM-kinase II is composed of a major Mr 50K polypeptide and a minor Mr 60K polypeptide; both bind calmodulin and are phosphorylated in a Ca2+/calmodulin-dependent manner. Recent studies have demonstrated that the 50K component of CaM-kinase II and the major postsynaptic density protein (mPSDp) in brain synaptic junctions (SJs) are virtually identical and that the CaM-kinase II and SJ 60K polypeptides are highly related. In the present study the photoaffinity analog [alpha-32P]8-azido-ATP was used to demonstrate that the 60K and 50K polypeptides of SJ-associated CaM-kinase II each bind ATP in the presence of Ca2+ plus calmodulin. This result is consistent with the observation that these proteins are phosphorylated in a Ca2+/calmodulin-dependent manner. Experiments using 32P-labeled peptides obtained by limited proteolysis of 60K and 50K polypeptides from SJs demonstrated that within each kinase polypeptide the same peptide regions contain both autophosphorylation and 125I-calmodulin binding sites. These results suggested that the autophosphorylation of CaM-kinase II could regulate its capacity to bind calmodulin and, thus, its capacity to phosphorylate substrate proteins. By using 125I-calmodulin overlay techniques and sodium dodecyl sulfate-polyacrylamide gel electrophoresis we found that phosphorylated 50K and 60K CaM-kinase II polypeptides bound more calmodulin (50-70%) than did unphosphorylated kinase polypeptides. Levels of in vitro CaM-kinase II activity in SJs were measured by phosphorylation of exogenous synapsin I. SJs containing highly phosphorylated CaM-kinase II displayed greater activity in phosphorylating synapsin I (300% at 15 nM calmodulin) relative to control SJs that contained unphosphorylated CaM-kinase II. The CaM-kinase II activity in phosphorylated SJs was indistinguishable from control SJs at saturating calmodulin concentrations (300-1,000 nM). These findings show that the degree of autophosphorylation of CaM-kinase II in brain SJs modulates its in vitro activity at low and possibly physiological calmodulin concentrations; such a process may represent a mechanism of regulating this kinase's activity at CNS synapses in situ.
Synaptic junctions (SJs) from rat forebrain were examined for Ca2+/calmodulin (CaM)-dependent kinase activity and compared to synaptic plasma membrane (SPM) and postsynaptic density (PSD) fractions. The kinase activity in synaptic fractions was examined for its capacity to phosphorylate endogenous proteins or exogenous synapsin I, in the presence or absence of Ca2+ plus CaM. When assayed for endogenous protein phosphorylation, SJs contained approximately 25-fold greater amounts of Ca2+/CAM-dependent kinase activity than SPMs, and fivefold more activity than PSDs. When kinase activities were measured by phosphorylation of exogenous synapsin I, SJs contained fourfold more activity than SPMs, and 10-fold more than PSDs. The phosphorylation of SJ proteins of 60- and 50-kilodalton (major PSD protein) polypeptides were greatly stimulated by Ca2+/CaM; levels of phosphorylation for these proteins were 23- and 17-fold greater than basal levels, respectively. Six additional proteins whose phosphorylation was stimulated 6-15-fold by Ca2+/CAM were identified in SJs. These proteins include synapsin I, and proteins of 240, 207, 170, 140, and 54 kilodaltons. The 54-kilodalton protein is a highly phosphorylated form of the major PSD protein and the 170-kilodalton component is a cell-surface glycoprotein of the postsynaptic membrane that binds concanavalin A. The CaM-dependent kinase in SJ fractions phosphorylated endogenous phosphoproteins at serine and/or threonine residues. Ca2+-dependent phosphorylation in SJ fractions was strictly dependent on exogenous CaM, even though SJs contained substantial amounts of endogenous CaM (15 micrograms CaM/mg SJ protein). Exogenous CaM, after being functionally incorporated into SJs, was rapidly removed by sequential washings. These observations suggest that the SJ-associated CaM involved in regulating Ca2+-dependent protein phosphorylation may be in dynamic equilibrium with the cytoplasm. These findings indicate that a brain CaM-dependent kinase(s) and substrate proteins are concentrated at SJs and that CaM-dependent protein phosphorylation may play an important role in mechanisms that underlie synaptic communication.
OBJECTIVE: To test whether crowdsourced lay raters can accurately assess cataract surgical skills. DESIGN: Two-armed study: independent cross-sectional and longitudinal cohorts. SETTING: Washington University Department of Ophthalmology. PARTICIPANTS AND METHODS: Sixteen cataract surgeons with varying experience levels submitted cataract surgery videos to be graded by 5 experts and 300+ crowdworkers masked to surgeon experience. Cross-sectional study : 50 videos from surgeons ranging from first-year resident to attending physician, pooled by years of training. Longitudinal study : 28 videos obtained at regular intervals as residents progressed through 180 cases. Surgical skill was graded using the modified Objective Structured Assessment of Technical Skill (mOSATS). Main outcome measures were overall technical performance, reliability indices, and correlation between expert and crowd mean scores. RESULTS: Experts demonstrated high interrater reliability and accurately predicted training level, establishing construct validity for the modified OSATS. Crowd scores were correlated with (r = 0.865, p < 0.0001) but consistently higher than expert scores for first, second, and third-year residents (p < 0.0001, paired t-test). Longer surgery duration negatively correlated with training level (r = −0.855, p < 0.0001) and expert score (r = −0.927, p < 0.0001). The longitudinal dataset reproduced cross-sectional study findings for crowd and expert comparisons. A regression equation transforming crowd score plus video length into expert score was derived from the cross-sectional dataset (r 2 = 0.92) and demonstrated excellent predictive modeling when applied to the independent longitudinal dataset (r 2 = 0.80). A group of student raters who had edited the cataract videos also graded them, producing scores that more closely approximated experts than the crowd. CONCLUSIONS: Crowdsourced rankings correlated with expert scores, but were not equivalent; crowd scores overestimated technical competency, especially for novice surgeons. A novel approach of adjusting crowd scores with surgery duration generated a more accurate predictive model for surgical skill. More studies are needed before crowdsourcing can be reliably used for assessing surgical proficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.