Kidney cancer (or renal cell carcinoma [RCC]) is known as “the internist’s tumor” because it has protean systemic manifestations suggesting it utilizes complex, non-physiologic metabolic pathways. Given the increasing incidence of this cancer and its lack of effective therapeutic targets, we undertook an extensive analysis of human RCC tissue employing combined grade-dependent proteomics and metabolomics analysis to determine how metabolic reprogramming occurring in this disease allows it to escape available therapeutic approaches. After validation experiments in RCC cell lines that were wild-type or mutant for the VHL tumor suppressor, in characterizing higher grade tumors we found that the Warburg effect is relatively more prominent at the expense of the tricarboxylic acid cycle and oxidative metabolism in general. Further, we found that the glutamine metabolism pathway acts to inhibit reactive oxygen species, as evidenced by an upregulated glutathione pathway, while the β-oxidation pathway is inhibited leading to increased fatty acyl-carnitines. In support of findings from previous urine metabolomics analyses, we also documented tryptophan catabolism associated with immune suppression, which was highly represented in RCC compared to other metabolic pathways. Together, our results offer a rationale to evaluate novel anti-metabolic treatment strategies being developed in other disease settings as therapeutic strategies in RCC.
In physiological ionic conditions (200 mM NaCl), the (dC-dG)16 and (dC-dG)13 blocks in plasmid pRW751 are in a left-handed state when the negative superhelical density of the plasmid is greater than 0.972. As the salt concentration decreases or when (dmC-dG) sequences are present, less negative supercoiling is required to induce the right- to left-handed DNA transition. Furthermore, the single strand-specific nuclease, S1, recognizes and cleaves aberrant structural features at the junction between neighbouring right- and left-handed DNA regions.
Despite recent progress, systemic delivery remains the major hurdle for development of safe and effective small inhibitory RNA (siRNA)-based therapeutics. Encapsulation of siRNA into liposomes is a promising option to overcome obstacles such as low stability in serum and inefficient internalization by target cells. However, a major liability of liposomes is the potential to induce an acute inflammatory response, thereby increasing the risk of numerous adverse effects. In this study, we characterized a liposomal siRNA delivery vehicle, LNP201, which is capable of silencing an mRNA target in mouse liver by over 80%. The biodistribution profile, efficacy after single and multiple doses, mechanism of action, and inflammatory toxicity are characterized for LNP201. Furthermore, we demonstrate that the glucocorticoid receptor (GR) agonist dexamethasone (Dex) inhibits LNP201-induced cytokine release, inflammatory gene induction, and mitogen-activated protein kinase (MAPK) phosphorylation in multiple tissues. These data present a possible clinical strategy for increasing the safety profile of siRNA-based drugs while maintaining the potency of gene silencing.
Circular dichroism and 31P-NMR on synthetic oligomers of (dC-dG) inserted within DNA restriction fragments indicate that the right-handed B-structure can exist in close proximity to the left-handed Z-structure. Also, this salt-induced transition to Z-form in a small (dC-dG) segment (1.3%) of a recombinant plasmid markedly influenced the supercoil of the plasmid. These observations have implications for the postulated role of naturally occurring related simple sequences in the regulation of gene activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.