The human kallikreins are a large multigene family of closely related serine-type proteases. In this regard, they are similar to the multigene kallikrein families characterized in mice and rats. There is a much more extensive body of knowledge regarding the function of mouse and rat kallikreins in comparison with the human kallikreins. Human kallikrein 6 has been proposed as the homologue to rat myelencephalon-specific protease, an arginine-specific degradative-type protease abundantly expressed in the central nervous system and implicated in demyelinating disease. We present the xray crystal structure of mature, active recombinant human kallikrein 6 at 1.75-Å resolution. This high resolution model provides the first three-dimensional view of one of the human kallikreins and one of only a few structures of serine proteases predominantly expressed in the central nervous system. Enzymatic data are presented that support the identification of human kallikrein 6 as the functional homologue of rat myelencephalon-specific protease and are corroborated by a molecular phylogenetic analysis. Furthermore, the xray data provide support for the characterization of human kallikrein 6 as a degradative protease with structural features more similar to trypsin than the regulatory kallikreins.Recent studies demonstrate that humans have a large multigene family of at least 15 different kallikreins (serine type proteases, abbreviated as KLK 1 in reference to the gene, or hK in reference to the protein) (1). Similarly, the mouse and rat kallikrein gene families are characterized by a large number of closely related members that presumably arose because of gene duplication events (2-6). The different members of the mouse and rat kallikreins are characterized by a high degree of amino acid identity, but typically exhibit different preferences toward peptide substrates (7-12). Several human kallikreins have been identified as potentially useful diagnostic markers for breast (KLK3 and KLK6), prostate (KLK2 and KLK3), and ovarian (KLK6, KLK9, KLK10, and KLK11) cancers as well as neurodegenerative diseases such as Alzheimer's (KLK6) (1, 13-17).Myelencephalon-specific protease (MSP) is a member of the rat kallikrein gene family that is abundantly expressed in the rodent central nervous system and shown to be up-regulated in response to glutamate receptor-mediated excitotoxic injury (18). Potential human homologues to rat MSP have also been identified (18) and have been alternatively named protease M (19), Zyme (20), and neurosin (21). Mouse homologues to MSP have been reported as brain and skin serine protease (BSSP) (22) and brain serine protease (BSP) (23). It has been postulated that MSP/protease M/neurosin may play a key role in the regulation of myelin turnover and in demyelinating disease (18, 24 -27), including the development of multiple sclerosis lesions (25). Furthermore, this kallikrein may also play a role in the degradation of -amyloid or turnover of amyloid precursor protein (28,29). The kinetic properties of MSP have ident...
The ROK (repressor, open reading frame, kinase) protein family (Pfam 00480) is a large collection of bacterial polypeptides that includes sugar kinases, carbohydrate responsive transcriptional repressors, and many functionally uncharacterized gene products. ROK family sugar kinases phosphorylate a range of structurally distinct hexoses including the key carbon source D: -glucose, various glucose epimers, and several acetylated hexosamines. The primary sequence elements responsible for carbohydrate recognition within different functional categories of ROK polypeptides are largely unknown due to a limited structural characterization of this protein family. In order to identify the structural bases for substrate discrimination in individual ROK proteins, and to better understand the evolutionary processes that led to the divergent evolution of function in this family, we constructed an inclusive alignment of 227 representative ROK polypeptides. Phylogenetic analyses and ancestral sequence reconstructions of the resulting tree reveal a discrete collection of active site residues that dictate substrate specificity. The results also suggest a series of mutational events within the carbohydrate-binding sites of ROK proteins that facilitated the expansion of substrate specificity within this family. This study provides new insight into the evolutionary relationship of ROK glucokinases and non-ROK glucokinases (Pfam 02685), revealing the primary sequence elements shared between these two protein families, which diverged from a common ancestor in ancient times.
Given the foundational and the fundamental role that the Incident Command System (ICS) is intended to play in on-scene response efforts across the United States, it is important to determine what is known about the system and how this is known. Accordingly, this study addresses the following research question: 'How has research explored the ICS?'. To probe this question, a methodological review of the scant, but widening, pool of research literature directly related to the ICS was conducted. This paper reports on the findings of the analysis related to the focus, theoretical frameworks, population and sampling, methods, results, and conclusions of the existing research literature. While undertaken using different methodological approaches, the ICS research suggests that the system may be limited in its usefulness. In addition, the paper discusses the implications of the research for the state of knowledge of the system and for the direction of future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.