Sildenafil was effective and well tolerated in postmenopausal women with FSAD without concomitant HSDD or contributory emotional, relationship or historical abuse issues. All patients had protocol specified estradiol and free testosterone concentrations or were receiving estrogen and/or androgen replacement therapy.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
Use of chimeric antigen receptors (CARs) as the basis of targeted adoptive T cell therapies has enabled dramatic efficacy against multiple hematopoietic malignancies, but potency against bulky and solid tumors has lagged, potentially due to insufficient CAR-T cell expansion and persistence. To improve CAR-T cell efficacy, we utilized a potent activation switch based on rimiducid-inducible MyD88 and CD40 (iMC)-signaling elements. To offset potential toxicity risks by this enhanced CAR, an orthogonally regulated, rapamycin-induced, caspase-9-based safety switch (iRC9) was developed to allow in vivo elimination of CAR-T cells. iMC costimulation induced by systemic rimiducid administration enhanced CAR-T cell proliferation, cytokine secretion, and antitumor efficacy in both in vitro assays and xenograft tumor models. Conversely, rapamycin-mediated iRC9 dimerization rapidly induced apoptosis in a dose-dependent fashion as an approach to mitigate therapy-related toxicity. This novel, regulatable dual-switch system may promote greater CAR-T cell expansion and prolonged persistence in a drug-dependent manner while providing a safety switch to mitigate toxicity concerns.
Several pharmaceutical agents have been associated with rare but serious retinopathies, some resulting in blindness. Little is known of the mechanism(s) that produce these injuries. Mechanisms proposed thus far have not been embraced by the medical and scientific communities. However, preclinical and clinical data indicate that oxidative stress may contribute substantially to iatrogenic retinal disease. Retinal oxidative stress may be precipitated by the interaction of putative retinal toxins with the ocular redox system. The retina, replete with cytochromes P450 and myeloperoxidase, may serve to activate xenobiotics to oxidants, resulting in ocular injury. These activated agents may directly form retinal adducts or may diminish ocular reduced glutathione concentrations. Data are reviewed that suggest that indomethacin, tamoxifen, thioridazine, and chloroquine all produce retinopathies via a common mechanism-they produce ocular oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.