Background: Previously we identified a DNA damage response–deficient (DDRD) molecular subtype within breast cancer. A 44-gene assay identifying this subtype was validated as predicting benefit from DNA-damaging chemotherapy. This subtype was defined by interferon signaling. In this study, we address the mechanism of this immune response and its possible clinical significance. Methods: We used immunohistochemistry (IHC) to characterize immune infiltration in 184 breast cancer samples, of which 65 were within the DDRD subtype. Isogenic cell lines, which represent DDRD-positive and -negative, were used to study the effects of chemokine release on peripheral blood mononuclear cell (PBMC) migration and the mechanism of immune signaling activation. Finally, we studied the association between the DDRD subtype and expression of the immune-checkpoint protein PD-L1 as detected by IHC. All statistical tests were two-sided. Results: We found that DDRD breast tumors were associated with CD4+ and CD8+ lymphocytic infiltration (Fisher’s exact test P < .001) and that DDRD cells expressed the chemokines CXCL10 and CCL5 3.5- to 11.9-fold more than DNA damage response–proficient cells (P < .01). Conditioned medium from DDRD cells statistically significantly attracted PBMCs when compared with medium from DNA damage response–proficient cells (P < .05), and this was dependent on CXCL10 and CCL5. DDRD cells demonstrated increased cytosolic DNA and constitutive activation of the viral response cGAS/STING/TBK1/IRF3 pathway. Importantly, this pathway was activated in a cell cycle–specific manner. Finally, we demonstrated that S-phase DNA damage activated expression of PD-L1 in a STING-dependent manner. Conclusions: We propose a novel mechanism of immune infiltration in DDRD tumors, independent of neoantigen production. Activation of this pathway and associated PD-L1 expression may explain the paradoxical lack of T-cell-mediated cytotoxicity observed in DDRD tumors. We provide a rationale for exploration of DDRD in the stratification of patients for immune checkpoint–based therapies.
Prostate cancer (PCa) is the most prevalent cancer in men. Hyperactive STAT3 is thought to be oncogenic in PCa. However, targeting of the IL-6/STAT3 axis in PCa patients has failed to provide therapeutic benefit. Here we show that genetic inactivation of Stat3 or IL-6 signalling in a Pten-deficient PCa mouse model accelerates cancer progression leading to metastasis. Mechanistically, we identify p19ARF as a direct Stat3 target. Loss of Stat3 signalling disrupts the ARF–Mdm2–p53 tumour suppressor axis bypassing senescence. Strikingly, we also identify STAT3 and CDKN2A mutations in primary human PCa. STAT3 and CDKN2A deletions co-occurred with high frequency in PCa metastases. In accordance, loss of STAT3 and p14ARF expression in patient tumours correlates with increased risk of disease recurrence and metastatic PCa. Thus, STAT3 and ARF may be prognostic markers to stratify high from low risk PCa patients. Our findings challenge the current discussion on therapeutic benefit or risk of IL-6/STAT3 inhibition.
We investigated the kinetic behaviour and substrate specificity of PTEN (phosphatase and tensin homologue deleted on chromosome 10) using unilamellar vesicles containing substrate lipids in a background of phosphatidylcholine. PTEN displays the characteristics expected of an interfacial enzyme, since the rate of enzyme activity is dependent on the surface concentration of the substrate lipids used (mol fraction), as well as the bulk concentration. Surface-dilution analysis revealed the catalytic efficiency of PTEN for PtdIns(3,4,5) P (3) to be 200-fold greater than for either PtdIns(3,4) P (2) or PtdIns(3,5) P (2), and 1000-fold greater than for PtdIns3 P. The interfacial K (m) value of PTEN for PtdIns(3,4,5) P (3) was very low, reflecting the small proportions of this lipid that are present in cellular membranes. The catalytic-centre activity ( k (cat)) for PtdIns(3,4,5) P (3) was at least 200-fold greater than that for the water-soluble substrate Ins(1,3,4,5) P (4). The preference for lipid substrates may result from an interfacial activation of the enzyme, rather than processive catalysis of vesicular substrates. Moreover, both PtdIns(4,5) P (2) and univalent salts stimulated the activity of PTEN for PtdIns(3,4,5) P (3), but profoundly inhibited activity against Ins(1,3,4,5) P (4). The stimulatory effect of PtdIns(4,5) P (2) was greater in magnitude and more potent in comparison with other anionic phospholipid species. A mutation in the lipid-binding C2 domain (M-CBR3) that is biologically inactive did not alter overall catalytic efficiency in this model, but decreased the efficiency of the interfacial binding step, demonstrating its importance in the catalytic mechanism of PTEN.
BackgroundRadiotherapy is an effective treatment of intermediate/high-risk locally advanced prostate cancer, however, >30% of patients relapse within 5 years. Clinicopathological parameters currently fail to identify patients prone to systemic relapse and those whom treatment intensification may be beneficial. The purpose of this study was to independently validate the performance of a 70-gene Metastatic Assay in a cohort of diagnostic biopsies from patients treated with radical radiotherapy and androgen deprivation therapy.Patients and methodsA bridging cohort of prostate cancer diagnostic biopsy specimens was profiled to enable optimization of the Metastatic Assay threshold before further independent clinical validation in a cohort of diagnostic biopsies from patients treated with radical radiotherapy and androgen deprivation therapy. Multivariable Cox proportional hazard regression analysis was used to assess assay performance in predicting biochemical failure-free survival (BFFS) and metastasis-free survival (MFS).ResultsGene expression analysis was carried out in 248 patients from the independent validation cohort and the Metastatic Assay applied. Ten-year MFS was 72% for Metastatic Assay positive patients and 94% for Metastatic Assay negative patients [HR = 3.21 (1.35–7.67); P = 0.003]. On multivariable analysis the Metastatic Assay remained predictive for development of distant metastases [HR = 2.71 (1.11–6.63); P = 0.030]. The assay retained independent prognostic performance for MFS when assessed with the Cancer of the Prostate Assessment Score (CAPRA) [HR = 3.23 (1.22–8.59); P = 0.019] whilst CAPRA itself was not significant [HR = 1.88, (0.52–6.77); P = 0.332]. A high concordance [100% (61.5–100)] for the assay result was noted between two separate foci taken from 11 tumours, whilst Gleason score had low concordance.ConclusionsThe Metastatic Assay demonstrated significant prognostic performance in patients treated with radical radiotherapy both alone and independent of standard clinical and pathological variables. The Metastatic Assay could have clinical utility when deciding upon treatment intensification in high-risk patients. Genomic and clinical data are available as a public resource.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.