SUMMARY Omega-3 fatty acids (ω-3 FAs), DHA and EPA, exert anti-inflammatory effects, but the mechanisms are poorly understood. Here we show that the G protein-coupled receptor 120 (GPR120) functions as an ω-3 FA receptor/sensor. Stimulation of GPR120 with ω-3 FAs or a chemical agonist causes broad anti-inflammatory effects in monocytic RAW 264.7 cells and in primary intraperitoneal macrophages. All of these effects are abrogated by GPR120 knockdown. Since chronic macrophage-mediated tissue inflammation is a key mechanism for insulin resistance in obesity, we fed obese WT and GPR120 knockout mice a high fat diet with or without ω-3 FA supplementation. The ω-3 FA treatment inhibited inflammation and enhanced systemic insulin sensitivity in WT mice, but was without effect in GPR120 knockout mice. In conclusion, GPR120 is a functional ω-3 FA receptor/sensor and mediates potent insulin sensitizing and anti-diabetic effects in vivo by repressing macrophage-induced tissue inflammation.
Dysregulation of lipid metabolism in individual tissues can lead to systemic disruption of insulin action and glucose metabolism. Utilizing a comprehensive lipidomic platform and mice deficient in adipose tissue lipid chaperones aP2 and mal1, we explored how metabolic alterations in adipose tissue are linked to whole-body metabolism through lipid signals. A robust increase in de novo lipogenesis rendered the adipose tissue of these mice resistant to the deleterious systemic effects of dietary lipid exposure. Systemic lipid profiling also led to identification of C16:1n7-palmitoleate as an adipose tissue-derived lipid hormone that strongly stimulates muscle insulin action and suppresses hepatosteatosis. Our data reveal a novel, lipid-mediated endocrine network and demonstrate that adipose tissue uses lipokines such as C16:1n7-palmitoleate to communicate with distant organs and regulate systemic metabolic homeostasis.
Specific alterations in hepatic lipid composition characterize the spectrum of nonalcoholic fatty liver disease (NAFLD), which extends from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH). However, the plasma lipidome of NAFLD and whether NASH has a distinct plasma lipidomic signature are unknown. A comprehensive analysis of plasma lipids and eicosanoid metabolites quantified by mass spectrometry was performed in NAFL (n = 25) and NASH (n = 50) subjects and compared with lean normal controls (n = 50). The key findings include significantly increased total plasma monounsaturated fatty acids driven by palmitoleic (16:1 n7) and oleic (18:1 n9) acids content (P < 0.01 for both acids in both NAFL and NASH). The levels of palmitoleic acid, oleic acid, and palmitoleic acid to palmitic acid (16:0) ratio were significantly increased in NAFLD across multiple lipid classes. Linoleic acid (8:2n6) was decreased (P < 0.05), with a concomitant increase in γ-linolenic (18:3n6) and dihomo γ-linolenic (20:3n6) acids in both NAFL and NASH (P < 0.001 for most lipid classes). The docosahexanoic acid (22:6 n3) to docosapentenoic acid (22:5n3) ratio was significantly decreased within phosphatidylcholine (PC), and phosphatidylethanolamine (PE) pools, which was most marked in NASH subjects (P < 0.01 for PC and P < 0.001 for PE). The total plasmalogen levels were significantly decreased in NASH compared with controls (P < 0.05). A stepwise increase in lipoxygenase (LOX) metabolites 5(S)-hydroxyeicosatetraenoic acid (5-HETE), 8-HETE, and 15-HETE characterized progression from normal to NAFL to NASH. The level of 11-HETE, a nonenzymatic oxidation product of arachidonic (20:4) acid, was significantly increased in NASH only. Conclusions: Although increased lipogenesis, desaturases, and LOX activities characterize NAFL and NASH, impaired peroxisomal polyunsaturated fatty acid (PUFA) metabolism and nonenzymatic oxidation is associated with progression to NASH.
The synthesis of triglycerides is catalyzed by two known acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. Although they catalyze the same biochemical reaction, these enzymes share no sequence homology, and their relative functions are poorly understood. Gene knockout studies in mice have revealed that DGAT1 contributes to triglyceride synthesis in tissues and plays an important role in regulating energy metabolism but is not essential for life. Here we show that DGAT2 plays a fundamental role in mammalian triglyceride synthesis and is required for survival. DGAT2-deficient (Dgat2 ؊/؊ ) mice are lipopenic and die soon after birth, apparently from profound reductions in substrates for energy metabolism and from impaired permeability barrier function in the skin. DGAT1 was unable to compensate for the absence of DGAT2, supporting the hypothesis that the two enzymes play fundamentally different roles in mammalian triglyceride metabolism.Triglycerides (triacylglycerols) are the major storage form of energy in eukaryotic organisms. However, excessive deposition of triglycerides in white adipose tissue (WAT) 1 leads to obesity and in non-adipose tissues (such as pancreatic  cells, skeletal muscle, and liver) is associated with tissue dysfunction referred to as lipotoxicity (1, 2). Therefore, an understanding of the processes that mediate triglyceride synthesis is of significant biomedical importance.Triglycerides are synthesized from diacylglycerol and activated forms of fatty acids (fatty acyl-CoAs) in a reaction catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes (3-5). The genes for two DGAT enzymes, DGAT1 and DGAT2, have been identified (6, 7). Both DGAT1 and DGAT2 are ubiquitously expressed, with the highest levels of expression found in tissues that are active in triglyceride synthesis, such as WAT, small intestine, liver, and mammary gland (6, 7). Both enzymes are intrinsic membrane proteins, although DGAT1 has 6 -12 putative transmembrane domains, whereas DGAT2 has one. Both also have similarly broad fatty acyl-CoA substrate specificities in in vitro assays (7). However, despite their ability to catalyze similar reactions, DGAT1 and DGAT2 belong to different gene families that share neither DNA nor protein sequence similarity. DGAT1 is homologous to the acylCoA:cholesterol acyltransferase enzymes, ACAT1 and ACAT2, which are involved in cholesterol ester biosynthesis (6), whereas DGAT2 shares homology with acyl-CoA:monoacylglycerol acyltransferase enzymes (8 -13). This raises the question of why two different types of DGAT enzymes have emerged from convergent evolution.Insights into the functions of DGAT1 and DGAT2 in triglyceride metabolism have been provided by studies in yeast. Through deletion and overexpression studies, several groups have demonstrated that DGA1, the yeast homologue of DGAT2, is the major DGAT enzyme contributing to triglyceride synthesis and storage in yeast (14 -16). In contrast, ARE2, a yeast homologue of DGAT1, plays a minor role in triglyceride synthesis. Intere...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.