The endothelial cytoskeleton is a barrier for leukocyte transendothelial migration (TEM). Mononuclear and polymorphonuclear leukocytes generate gaps of similar micron-scale size when squeezing through inflamed endothelial barriers in vitro and in vivo. To elucidate how leukocytes squeeze through these barriers, we co-tracked the endothelial actin filaments and leukocyte nuclei in real time. Nuclear squeezing involved either preexistent or de novo-generated lobes inserted into the leukocyte lamellipodia. Leukocyte nuclei reversibly bent the endothelial actin stress fibers. Surprisingly, formation of both paracellular gaps and transcellular pores by squeezing leukocytes did not require Rho kinase or myosin II-mediated endothelial contractility. Electron-microscopic analysis suggested that nuclear squeezing displaced without condensing the endothelial actin filaments. Blocking endothelial actin turnover abolished leukocyte nuclear squeezing, whereas increasing actin filament density did not. We propose that leukocyte nuclei must disassemble the thin endothelial actin filaments interlaced between endothelial stress fibers in order to complete TEM.
Background
A(H1N1)pdm09 influenza viruses replicate efficiently in respiratory epithelia and are transmitted via respiratory droplets and aerosols expelled by infected hosts. The relative onward transmission potential of influenza viruses replicating in the upper and lower respiratory epithelial cells has not been fully defined.
Methods
Wild-type and barcoded A(H1N1)pdm09 viruses that differed by 2 synonymous mutations per gene segment were inoculated into ferrets via intra-nasal and intra-tracheal routes. Naïve recipients were exposed to the exhaled breath of inoculated donors for 8 hours on day 2 post-inoculation. Onward transmission potential of wild-type and barcoded genotypes were monitored by next generation sequencing.
Results
Transmissible airborne particles were respired from the upper but not the lower respiratory epithelial cells of donor ferrets. There was limited mixing of viral populations replicating in the upper and lower respiratory tissues.
Conclusions
The ferret upper respiratory epithelium was mapped as the anatomic site that generated influenza virus-laden particles mediating onward transmission by air. Our results suggest that vaccines and antivirals should aim to reduce viral loads in the upper respiratory tract for prevention of influenza transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.