Wear particles produced from total joint replacements have been shown to stimulate a foreign body and chronic inflammatory reaction that results in periprosthetic osteolysis. Most animal models that simulate these events have used a single injection of particles, which is not representative of the clinical scenario, in which particles are continuously generated. The goal of this study was to evaluate the feasibility of an osmotic pump for the continuous delivery of clinically relevant submicron-sized particles over an extended period of time. Blue-dyed polystyrene particles and retrieved ultra-high molecular weight polyethylene (UHMWPE) particles, both suspended in mouse serum, were loaded into an Alzet mini-osmotic pump. Pumps were attached to vinyl tubing that ended with hollow titanium rods, simulating a metal implant, which was suspended in a collection vessel. The number of particles collected was evaluated over 2- and 4-week time periods. Delivery of both the polystyrene and UHMWPE particles was feasible over pump concentrations of 10(9) to 10(11) particles per pump. Furthermore, delivery efficiency of polystyrene particles decreased with increasing initial particle concentration, whereas delivery efficiency of UHMWPE particles increased slightly with increasing initial particle concentration. For UHMWPE, approximately one-third of the particles in the pump were collected at 4 weeks. This in vitro study has quantified the efficiency of a unique particle pumping system that may be used in future in vivo investigations to develop a murine model of continuous particle infusion.
In vitro models are important investigative tools in understanding the biological processes involved in wear-particle-induced chronic inflammation and periprosthetic osteolysis. In the clinical scenario, particles are produced and delivered continuously over extended periods of time. Previously, we quantified the delivery of both polystyrene and polyethylene particles over 2-and 4-week time periods using osmotic pumps and collection tubes. In the present study, we used explanted mice femora in organ culture and showed that continuous intramedullary delivery of submicron-sized polymer particles using osmotic pumps is feasible. Furthermore, infusion of 2.60 3 10 11 particles per mL (intermediate concentration) of ultrahigh molecular weight polyethylene (UHMWPE) for 2 weeks and 8.06 3 10 11 particles per mL (high concentration) UHMWPE for 4 weeks both yielded significantly higher scores for bone loss when compared with controls in which only mouse serum was infused. '
Continued production of wear debris affects both initial osseointegration and subsequent bone remodeling of total joint replacements (TJRs). However, continuous delivery of clinically relevant particles using a viable, cost effective, quantitative animal model to simulate the scenario in humans has been a challenge for orthopaedic researchers. In this study, we successfully infused blue-dyed polystyrene particles, similar in size to wear debris in humans, to the intramedullary space of the mouse femur for four weeks using an osmotic pump. Approximately 40% of the original particle load (85 ul) was delivered into the intramedullary space, an estimate of 3 × 10 9 particles. The visible blue dye carried by the particles confirmed the delivery. This model demonstrated that continuous infusion of particles to the murine bone-implant interface is possible. In vivo biological processes associated using wear debris particles can be studied using this new animal model.
An approach binary spectronephelometry (BSN) to perform real-time simultaneous noninvasive in situ physical and chemical analysis of bacterial cultures in fluid media is described. We choose to characterize cultures of Escherichia coli (NC), Pseudomonas aeruginosa (PA), and Shewanella oneidensis (SO) in the specific case of complex media whose Raman spectrum cannot be unambiguously assigned. Nevertheless, organism number density and a measure of the chemical makeup of the fluid medium can be monitored noninvasively, simultaneously, and continuously, despite changing turbidity and medium chemistry. The method involves irradiating a culture in fluid medium in an appropriate vessel (in this case a standard 1 cm cuvette) using a near infrared laser and collecting all the backscattered light from the cuvette, i.e., the Rayleigh–Mie line and the inelastically emitted light which includes unresolved Raman scattered light and fluorescence. Complex “legacy” media contain materials of biological origin whose chemical composition cannot be fully delineated. We independently calibrate this approach to a commonly used reference, optical density at 600 nm (OD600) for characterizing the number density of organisms. We suggest that the total inelastically emitted light could be a measure of the chemical state of a biologically based medium, e.g., lysogeny broth (LB). This approach may be useful in a broad range of basic and applied studies and enterprises that utilize bacterial cultures in any medium or container that permits optical probing in the single scattering limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.