This Review Article provides a multi-stakeholder view on the current status of neoadjuvant therapy in lung cancer. Given the success of oncogene-targeted therapy and immunotherapy for patients with advanced lung cancer, there is a renewed interest in studying these agents in earlier disease settings with the opportunity to have an even greater impact on patient outcomes. There are unique opportunities and challenges with the neoadjuvant approach to drug development. To achieve more rapid knowledge turns, study designs, endpoints, and definitions of pathologic response should be standardized and harmonized. Continued dialogue with all stakeholders will be critical to design and test novel induction strategies, which could expedite drug development for patients with early lung cancer who are at high risk for metastatic recurrence. Published by Elsevier Inc. on behalf of International Association for the Study of Lung Cancer.
The severe acute respiratory syndrome (SARS)-CoV-2 is an emerging viral pathogen responsible for the global coronavirus disease 2019 (COVID)-19 pandemic resulting in significant human morbidity and mortality. Based on preliminary clinical reports, hypoxic respiratory failure complicated by acute respiratory distress syndrome is the leading cause of death. Further, septic shock, late-onset cardiac dysfunction, and multiorgan system failure are also described as contributors to overall mortality. Although extracorporeal membrane oxygenation and other modalities of mechanical cardiopulmonary support are increasingly being utilized in the treatment of respiratory and circulatory failure refractory to conventional management, their role and efficacy as support modalities in the present pandemic are unclear. We review the rapidly changing epidemiology, pathophysiology, emerging therapy, and clinical outcomes of COVID-19; and based on these data and previous experience with artificial cardiopulmonary support strategies, particularly in the setting of infectious diseases, provide consensus recommendations from ASAIO. Of note, this is a “living document,” which will be updated periodically, as additional information and understanding emerges.
The 1918 influenza killed approximately 50 million people in a few short years, and now, the world is facing another pandemic. In December 2019, a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an international outbreak of a respiratory illness termed coronavirus disease 2019 (COVID-19) and rapidly spread to cause the worst pandemic since 1918. Recent clinical reports highlight an atypical presentation of acute respiratory distress syndrome (ARDS) in COVID-19 patients characterized by severe hypoxemia, an imbalance of the renin–angiotensin system, an increase in thrombogenic processes, and a cytokine release storm. These processes not only exacerbate lung injury but can also promote pulmonary vascular remodeling and vasoconstriction, which are hallmarks of pulmonary hypertension (PH). PH is a complication of ARDS that has received little attention; thus, we hypothesize that PH in COVID-19-induced ARDS represents an important target for disease amelioration. The mechanisms that can promote PH following SARS-CoV-2 infection are described. In this review article, we outline emerging mechanisms of pulmonary vascular dysfunction and outline potential treatment options that have been clinically tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.