A method is presented for the assembly of lipid bilayers on silica colloids via reconstitution of dried lipid films solvent-cast from chloroform within packed beds of colloids ranging from 100 nm to 10 μm in diameter. Rapid solvent evaporation from the packed bed void volume results in uniform distribution of dried lipid throughout the colloidal bed. Fluorescence measurements indicate that significant, if not quantitative, retention of DOPC or DPPC films cast between sub-bilayer and multilayer quantities occurs when the colloids are redispersed in aqueous solution. Phospholipid bilayers assembled in this manner are shown to effectively passivate the surface of 250 nm colloids to nonspecific adsorption of bovine serum albumin. The method is shown to be capable of preparing supported bilayers on colloid surfaces that do not generally support vesicle fusion such as poly(ethylene glycol) (PEG) modified silica colloids. Bilayers of lipids that have not been reported to self-assemble by vesicle fusion, including gel-phase lipids and single-chain diacetylene amphiphiles, can also be formed by this method. The utility of the solid-core support is demonstrated by the facile assembly of supported lipid bilayers within fused silica capillaries to generate materials that are potentially suitable for the analysis of membrane interactions in a microchannel format.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.