Most of the light from blazars, active galactic nuclei with jets of magnetized plasma that point nearly along the line of sight, is produced by high-energy particles, up to around 1 TeV. Although the jets are known to be ultimately powered by a supermassive black hole, how the particles are accelerated to such high energies has been an unanswered question. The process must be related to the magnetic field, which can be probed by observations of the polarization of light from the jets. Measurements of the radio to optical polarization—the only range available until now—probe extended regions of the jet containing particles that left the acceleration site days to years earlier1–3, and hence do not directly explore the acceleration mechanism, as could X-ray measurements. Here we report the detection of X-ray polarization from the blazar Markarian 501 (Mrk 501). We measure an X-ray linear polarization degree ΠX of around 10%, which is a factor of around 2 higher than the value at optical wavelengths, with a polarization angle parallel to the radio jet. This points to a shock front as the source of particle acceleration and also implies that the plasma becomes increasingly turbulent with distance from the shock.
A black hole x-ray binary (XRB) system forms when gas is stripped from a normal star and accretes onto a black hole, which heats the gas sufficiently to emit x-rays. We report a polarimetric observation of the XRB Cygnus X-1 using the Imaging X-ray Polarimetry Explorer. The electric field position angle aligns with the outflowing jet, indicating that the jet is launched from the inner x-ray emitting region. The polarization degree is 4.01 ± 0.20% at 2 to 8 kiloelectronvolts, implying that the accretion disk is viewed closer to edge-on than the binary orbit. The observations reveal that hot x-ray emitting plasma is spatially extended in a plane perpendicular to the jet axis, not parallel to the jet.
This work presents numerical simulations of meteoroid streams released by comet 21P/Giacobini-Zinner over the period 1850-2030. The initial methodology, based on Vaubaillon et al. (2005), has been updated and modified to account for the evolution of the comet's dust production along its orbit. The peak time, intensity, and duration of the shower were assessed using simulated activity profiles that are calibrated to match observations of historic Draconid outbursts. The characteristics of all the main apparitions of the shower are reproduced, with a peak time accuracy of half an hour and an intensity estimate correct to within a factor of 2 (visual showers) or 3 (radio outbursts). Our model also revealed the existence of a previously unreported strong radio outburst on October 9 1999, that has since been confirmed by archival radar measurements. The first results of the model, presented in Egal et al. (2018), provided one of the best predictions of the recent 2018 outburst. Three future radio outbursts are predicted in the next decade, in 2019, 2025 and 2029. The strongest activity is expected in 2025 when the Earth encounters the young 2012 trail. Because of the dynamical uncertainties associated with comet 21P's orbital evolution between the 1959 and 1965 apparitions, observations of the 2019 radio outburst would be particularly helpful to improve the confidence of subsequent forecasts.
Astronomical Roentgen Telescope – X-ray Concentrator (ART-XC) is the hard X-ray instrument with grazing incidence imaging optics on board the Spektr-Roentgen-Gamma (SRG) observatory. The SRG observatory is the flagship astrophysical mission of the Russian Federal Space Program, which was successively launched into orbit around the second Lagrangian point (L2) of the Earth-Sun system with a Proton rocket from the Baikonur cosmodrome on 13 July 2019. The ART-XC telescope will provide the first ever true imaging all-sky survey performed with grazing incidence optics in the 4–30 keV energy band and will obtain the deepest and sharpest map of the sky in the energy range of 4–12 keV. Observations performed during the early calibration and performance verification phase as well as during the ongoing all-sky survey that started on 12 December 2019 have demonstrated that the in-flight characteristics of the ART-XC telescope are very close to expectations based on the results of ground calibrations. Upon completion of its four-year all-sky survey, ART-XC is expected to detect approximately 5000 sources (~3000 active galactic nuclei, including heavily obscured ones, several hundred clusters of galaxies, ~1000 cataclysmic variables and other Galactic sources), and to provide a high-quality map of the Galactic background emission in the 4–12 keV energy band. ART-XC is also well suited for discovering transient X-ray sources. In this paper, we describe the telescope, the results of its ground calibrations, the major aspects of the mission, the in-flight performance of ART-XC, and the first scientific results.
Imaging X-ray Polarimetry Explorer (IXPE) is a Small Explorer mission by NASA and Agenzia Spaziale Italiana, launched on 2021 December 9, dedicated to investigating X-ray polarimetry allowing angular-, time-, and energy-resolved observations in the 2–8 keV energy band. IXPE is in the science observation phase since 2022 January; it is comprised of three identical telescopes with grazing-incidence mirrors, each one having in the focal plane a gas pixel detector. In this paper, we present a possible guideline to obtain an optimal background selection in polarimetric analysis, and a rejection strategy to remove instrumental background. This work is based on the analysis of IXPE observations, aiming to improve as much as possible the polarimetric sensitivity. In particular, the developed strategies have been applied as a case study to the IXPE observation of the 4U 0142+61 magnetar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.