Accreting black holes are believed to emit X-rays which then mediate information about strong gravity in the vicinity of the emission region. We report on a set of new routines for the xspec package for analysing X-ray spectra of black-hole accretion disks. The new computational tool significantly extends the capabilities of the currently available fitting procedures that include the effects of strong gravity, and allows one to systematically explore the constraints on more model parameters than previously possible (for example black-hole angular momentum). Moreover, axial symmetry of the disk intrinsic emissivity is not assumed, although it can be imposed to speed up the computations. The new routines can be used also as a stand-alone and flexible code with the capability of handling time-resolved spectra in the regime of strong gravity. We have used the new code to analyse the mean X-ray spectrum from the long XMM-Newton 2001 campaign of the Seyfert 1 galaxy MCG-6-30-15. Consistent with previous findings, we obtained a good fit to the broad Fe K line profile for a radial line intrinsic emissivity law in the disk which is not a simple power law, and for near maximal value of black hole angular momentum. However, equally good fits can be obtained also for small values of the black hole angular momentum. The code has been developed with the aim of allowing precise modelling of relativistic effects. Although we find that current data cannot constrain the parameters of black-hole/accretion disk system well, the code allows, for a given source or situation, detailed investigations of what features of the data future studies should be focused on in order to achieve the goal of uniquely isolating the parameters of such systems.
Context. Stellar dynamics indicate the presence of a supermassive 3−4 × 10 6 M black hole at the Galactic Center. It is associated with the variable radio, near-infrared, and X-ray source Sagittarius A* (SgrA*). Aims. The goal is the investigation and understanding of the physical processes responsible for the variable emission from SgrA*. Methods. The observations have been carried out using the NACO adaptive optics (AO) instrument at the European Southern Observatory's Very Large Telescope (July 2005, May 2007) and the ACIS-I instrument aboard the Chandra X-ray Observatory (July 2005). Results. We find that for the July 2005 flare the variable and polarized NIR emission of SgrA* occurred synchronous with a moderately bright flare event in the X-ray domain with an excess 2−8 keV luminosity of about 8 × 10 33 erg/s. We find no time lag between the flare events in the two wavelength bands with a lower limit of ≤10 min. The May 2007 flare shows the highest sub-flare to flare contrast observed until now. It provides evidence for a variation in the profile of consecutive sub-flares. Conclusions. We confirm that highly variable and NIR polarized flare emission is non-thermal and that there exists a class of synchronous NIR/X-ray flares. We find that the flaring state can be explained via the synchrotron self-Compton (SSC) process involving up-scattered X-rays from the compact source component. The observations can be interpreted in a model involving a temporary disk with a short jet. In the disk component the flux density variations can be explained by spots on relativistic orbits around the central supermassive black hole (SMBH). The profile variations for the May 2007 flare can be interpreted as a variation of the spot structure due to differential rotation within the disk.
We present the first systematic physical modelling of the time-lag spectra between the soft (0.3-1 keV) and the hard (1.5-4 keV) X-ray energy bands, as a function of Fourier frequency, in a sample of 12 active galactic nuclei which have been observed by XMM -Newton. We concentrate particularly on the negative X-ray time-lags (typically seen above 10 −4 Hz) i.e. soft band variations lag the hard band variations, and we assume that they are produced by reprocessing and reflection by the accretion disc within a lamp-post X-ray source geometry. We also assume that the response of the accretion disc, in the soft X-ray bands, is adequately described by the response in the neutral Fe Kα line at 6.4 keV for which we use fully general relativistic ray-tracing simulations to determine its time evolution. These response functions, and thus the corresponding time-lag spectra, yield much more realistic results than the commonlyused, but erroneous, top-hat models. Additionally we parametrize the positive part of the time-lag spectra (typically seen below 10 −4 Hz) by a power-law. We find that the best-fitting BH masses, M , agree quite well with those derived by other methods, thus providing us with a new tool for BH mass determination. We find no evidence for any correlation between M and the BH spin parameter, α, the viewing angle, θ, or the height of the X-ray source above the disc, h. Also on average, the X-ray source lies only around 3.7 gravitational radii above the accretion disc and θ is distributed uniformly between 20 and 60 • . Finally, there is a tentative indication that the distribution of α may be bimodal above and below 0.62.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.