Therapeutic targeting of the beta-adrenergic receptors has recently shown remarkable efficacy in the treatment of benign vascular tumors such as infantile hemangiomas. As infantile hemangiomas are reported to express high levels of beta adrenergic receptors, we examined the expression of these receptors on more aggressive vascular tumors such as hemangioendotheliomas and angiosarcomas, revealing beta 1, 2, and 3 receptors were indeed present and therefore aggressive vascular tumors may similarly show increased susceptibility to the inhibitory effects of beta blockade. Using a panel of hemangioendothelioma and angiosarcoma cell lines, we demonstrate that beta adrenergic inhibition blocks cell proliferation and induces apoptosis in a dose dependent manner. Beta blockade is selective for vascular tumor cells over normal endothelial cells and synergistically effective when combined with standard chemotherapeutic or cytotoxic agents. We demonstrate that inhibition of beta adrenergic signaling induces large scale changes in the global gene expression patterns of vascular tumors, including alterations in the expression of established cell cycle and apoptotic regulators. Using in vivo tumor models we demonstrate that beta blockade shows remarkable efficacy as a single agent in reducing the growth of angiosarcoma tumors. In summary, these experiments demonstrate the selective cytotoxicity and tumor suppressive ability of beta adrenergic inhibition on malignant vascular tumors and have laid the groundwork for a promising treatment of angiosarcomas in humans.
Previous studies suggest beta-adrenergic receptor (β-AR) antagonists (β-blockers) decrease breast cancer progression, tumor metastasis, and patient mortality; however the mechanism for this is unknown. Immunohistochemical analysis of normal and malignant breast tissue revealed overexpression of β1-AR and β3-AR in breast cancer. A retrospective cross-sectional study of 404 breast cancer patients was performed to determine the effect of β-blocker usage on tumor proliferation. Our analysis revealed that non-selective β-blockers, but not selective β-blockers, reduced tumor proliferation by 66% (p < 0.0001) in early stage breast cancer compared to non-users. We tested the efficacy of propranolol on an early stage breast cancer patient, and quantified the tumor proliferative index before and after treatment, revealing a propranolol-mediated 23% reduction (p = 0.02) in Ki67 positive tumor cells over a three-week period. The anti-proliferative effects of β-blockers were measured in a panel of breast cancer lines, demonstrating that mammary epithelial cells were resistant to propranolol, and that most breast cancer cell lines displayed dose dependent viability decreases following treatment. Selective β-blockers alone or in combination were not as effective as propranolol at reducing breast cancer cell proliferation. Molecular analysis revealed that propranolol treatment of the SK-BR-3 breast cancer line, which showed high sensitivity to beta blockade, led to a reduction in Ki67 protein expression, decreased phosphorylation of the mitogenic signaling regulators p44/42 MAPK, p38 MAPK, JNK, and CREB, increased phosphorylation of the cell survival/apoptosis regulators AKT, p53, and GSK3β. In conclusion, use of non-selective β-blockers in patients with early stage breast cancer may lead to decreased tumor proliferation.
Based largely on retrospective analyses and a handful of prospective case reports, pharmacological inhibition of the beta adrenergic receptors using beta blockers has shown clinical anti-cancer efficacy in reproductive cancers, as well as angiosarcoma and multiple myeloma. Because of the potential promise of beta blockers as an adjunct to standard anti-cancer therapy, it is imperative to identify other tumor types expressing beta adrenergic (β-AR) receptors so future preclinical and clinical studies can be directed at the most promising tumor targets. We performed immunohistochemical detection of β1-AR, β2-AR, and β3-AR across 29 of the most common human cancer types (389 tissues total) and 19 matching non-diseased controls (100 tissues total). Our analysis revealed all three β-AR receptors were expressed most strongly in melanoma relative to other cancer types. Other malignancies that revealed relatively higher levels of β-AR receptors were esophagus, pancreas, kidney, and lung cancers. Moreover, particular β-AR receptors exhibited significant overexpression in tumor tissue relative to their matching normal tissue in urogenital/reproductive malignancies including breast, endometrium, ovarian, and urothelial cancer, as well as colon, lung, and thyroid cancer. This study identifies several cancer types expressing the β-AR receptors which should be evaluated in future studies for susceptibility to beta blockade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.