Pluronic F-127 is a stable, non-toxic, copolymer that forms a gel at room
temperature and a liquid at 15°C when the concentration is 20-30%. Root-knot
nematode (Meloidogyne spp.) second-stage juveniles can move freely through
the gel and display attraction toward roots of tomato, Medicago truncatula,
common bean and Arabidopsis. The excellent clarity of the gel allows
examination of behavioural changes in the nematode as it reaches and infects
its host. Attraction assays showed that Meloidogyne javanica and M.
incognita move to roots much more rapidly than does M. hapla. Nematodes form
aggregates when in contact with root tips suggesting that the presence of a
signal from the nematode or from the root is involved in the attraction.
Nematodes suspended in Pluronic gel without roots aggregate into balls after
1 to 2 days. A coverslip placed on the gel accelerates and serves as a focus
for the aggregation, suggesting that lower oxygen, or perhaps a volatile
attractant, is involved in this behaviour. These observations demonstrate
that Pluronic gel is a useful medium for dissecting attraction of root-knot
nematodes to their hosts and for studying additional aspects of their
behaviour.
We investigated the effects of soil nutrient and water availability on the growth and chemistry of the silky willow (Salix sericea Marshall), and on the performance of the imported willow leaf beetle (Plagiodera versicolora Laichartig). Our major aims were to determine whether there are nutrient–water interactions on plant traits and whether this leads to parallel interactions for herbivore performance. We used a 2 × 3 fully factorial design, which consisted of high and low nutrient treatments crossed with dry, field capacity, and flooded water treatments. We found that nutrient additions increased plant growth, but only in field capacity and flooded conditions (nutrient–water interaction). Leaf nitrogen content also depended on the interaction between soil nutrients and water: nutrient addition resulted in a larger increase in foliar nitrogen in the field capacity treatment than in the flooded and dry treatments. Of the two phenolic glycosides measured, salicortin and 2′‐cinnamoylsalicortin, only one was affected by the treatments. 2′‐cinnamoylsalicortin concentration was lower in the high nutrient–dry treatment compared with the other treatments. In contrast to plant responses, there were no interactions found for larval or pupal weight or development time. Nutrient addition led to an increase in female pupal weight, and foliar N was positively correlated with female pupal weight and negatively correlated with female development time. In addition, leaf water was positively correlated with female development time. The lack of interactions for insect performance may stem from the small absolute differences in foliar nitrogen content associated with the interaction between the nutrients and water. Taken together, our results suggest that nutrient–water interactions influence plant traits that are potentially important for insect performance (leaf nitrogen and water), but these interactions do not produce parallel interactions in beetle performance.
The distribution and abundance of herbivores on plants growing under different environmental conditions may depend upon preference and/or performance. Soil nutrients and water availability are key determinants of herbivore distribution, as both influence plant growth and tissue quality. However, the effects of water on plant quality may depend upon the availability of nutrients and vice versa. Surprisingly few studies have examined the interactions between the two. We investigated the effects of soil nutrient and water availability on (1) the growth and chemistry of the silky willow (Salix sericea Marshall), and (2) the preference and performance of the imported willow leaf beetle (Plagiodera versicolora Laichartig). We conducted two common garden experiments using a similar 2x2 fully factorial design with two levels of soil nutrients (low, high) and two levels of water availability (field capacity, flooded). In the first experiment (larval performance), larval development time and pupal weight were not influenced by nutrient or water availability to the plant. This occurred despite the fact that plants in the high nutrient treatments had higher protein concentration and lower foliar concentrations of the phenolic glycoside 2'-cinnamoylsalicortin. In the second experiment (adult preference), we caged four plants (one from each treatment) and released beetles into cages. We found that plant growth and leaf protein depended upon the interaction between nutrient and water availability. Plant growth was greatest in the high nutrient-field capacity treatment and leaf protein was greatest in the high nutrient-flooded treatment. In contrast, adults settled and oviposited preferentially on the high nutrient treatment under flooded conditions, but we found no evidence of interactions between nutrients and water on preference. Thus, at least under flooded conditions nutrients affect adult preference. We also found that foliar protein was correlated positively with adult oviposition preference and per capita egg production. Our results, then, suggest that soil nutrients can influence adult preference, and that adults choose high-quality hosts (high protein) that promote egg production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.