BACKGROUNDSpinal muscular atrophy is an autosomal recessive neuromuscular disorder that is caused by an insufficient level of survival motor neuron (SMN) protein. Nusinersen is an antisense oligonucleotide drug that modifies pre-messenger RNA splicing of the SMN2 gene and thus promotes increased production of full-length SMN protein. METHODSWe conducted a randomized, double-blind, sham-controlled, phase 3 efficacy and safety trial of nusinersen in infants with spinal muscular atrophy. The primary end points were a motor-milestone response (defined according to results on the Hammersmith Infant Neurological Examination) and event-free survival (time to death or the use of permanent assisted ventilation). Secondary end points included overall survival and subgroup analyses of event-free survival according to disease duration at screening. Only the first primary end point was tested in a prespecified interim analysis. To control the overall type I error rate at 0.05, a hierarchical testing strategy was used for the second primary end point and the secondary end points in the final analysis. RESULTSIn the interim analysis, a significantly higher percentage of infants in the nusinersen group than in the control group had a motor-milestone response (21 of 51 infants [41%] vs. 0 of 27 [0%], P<0.001), and this result prompted early termination of the trial. In the final analysis, a significantly higher percentage of infants in the nusinersen group than in the control group had a motor-milestone response (37 of 73 infants [51%] vs. 0 of 37 [0%]), and the likelihood of event-free survival was higher in the nusinersen group than in the control group (hazard ratio for death or the use of permanent assisted ventilation, 0.53; P = 0.005). The likelihood of overall survival was higher in the nusinersen group than in the control group (hazard ratio for death, 0.37; P = 0.004), and infants with a shorter disease duration at screening were more likely than those with a longer disease duration to benefit from nusinersen. The incidence and severity of adverse events were similar in the two groups. CONCLUSIONSAmong infants with spinal muscular atrophy, those who received nusinersen were more likely to be alive and have improvements in motor function than those in the control group. Early treatment may be necessary to maximize the benefit of the drug. (Funded by Biogen and Ionis Pharmaceuticals; ENDEAR ClinicalTrials.gov number, NCT02193074.)
Respiration-induced tumor motion is a major obstacle for achieving high-precision radiotherapy of cancers in the thoracic and abdominal regions. Surrogate-based estimation and tracking methods are commonly used in radiotherapy, but with limited understanding of quantified correlation to tumor motion. In this study, we propose a method to simultaneously track the lung tumor and external surrogates to evaluate their spatial correlation in a quantitative way using dynamic MRI, which allows real-time acquisition without ionizing radiation exposure. To capture the lung and whole tumor, four MRI-compatible fiducials are placed on the patient's chest and upper abdomen. Two different types of acquisitions are performed in the sagittal orientation including multi-slice 2D cine MRIs to reconstruct 4D-MRI and two-slice 2D cine MRIs to simultaneously track the tumor and fiducials. A phase-binned 4D-MRI is first reconstructed from multi-slice MR images using body area as a respiratory surrogate and groupwise registration. The 4D-MRI provides 3D template volumes for different breathing phases. 3D tumor position is calculated by 3D-2D template matching in which 3D tumor templates in the 4D-MRI reconstruction and the 2D cine MRIs from the two-slice tracking dataset are registered. 3D trajectories of the external surrogates are derived via matching a 3D geometrical model of the fiducials to their segmentations on the 2D cine MRIs. We tested our method on ten lung cancer patients. Using a correlation analysis, the 3D tumor trajectory demonstrates a noticeable phase mismatch and significant cycle-to-cycle motion variation, while the external surrogate was not sensitive enough to capture such variations. Additionally, there was significant phase mismatch between surrogate signals obtained from the fiducials at different locations.
Objectives To develop and validate a prostate cancer (PCa) risk calculator (RC) incorporating multiparametric magnetic resonance imaging (mpMRI) and to compare its performance with that of the Prostate Biopsy Collaborative Group (PBCG) RC. Patients and Methods Men without a PCa diagnosis receiving mpMRI before biopsy in the Prospective Loyola University mpMRI (PLUM) Prostate Biopsy Cohort (2015–2020) were included. Data from a separate institution were used for external validation. The primary outcome was diagnosis of no cancer, grade group (GG)1 PCa, and clinically significant (cs)PCa (≥GG2). Binary logistic regression was used to explore standard clinical and mpMRI variables (prostate volume, Prostate Imaging‐Reporting Data System [PI‐RADS] version 2.0 lesions) with the final PLUM RC, based on a multinomial logistic regression model. Receiver‐operating characteristic curve, calibration curves, and decision‐curve analysis were evaluated in the training and validation cohorts. Results A total of 1010 patients were included for development (N = 674 training [47.8% PCa, 30.9% csPCa], N = 336 internal validation) and 371 for external validation. The PLUM RC outperformed the PBCG RC in the training (area under the curve [AUC] 85.9% vs 66.0%; P < 0.001), internal validation (AUC 88.2% vs 67.8%; P < 0.001) and external validation (AUC 83.9% vs 69.4%; P < 0.001) cohorts for csPCa detection. The PBCG RC was prone to overprediction while the PLUM RC was well calibrated. At a threshold probability of 15%, the PLUM RC vs the PBCG RC could avoid 13.8 vs 2.7 biopsies per 100 patients without missing any csPCa. At a cost level of missing 7.5% of csPCa, the PLUM RC could have avoided 41.0% (566/1381) of biopsies compared to 19.1% (264/1381) for the PBCG RC. The PLUM RC compared favourably with the Stanford Prostate Cancer Calculator (SPCC; AUC 84.1% vs 81.1%; P = 0.002) and the MRI‐European Randomized Study of Screening for Prostate Cancer (ERSPC) RC (AUC 84.5% vs 82.6%; P = 0.05). Conclusions The mpMRI‐based PLUM RC significantly outperformed the PBCG RC and compared favourably with other mpMRI‐based RCs. A large proportion of biopsies could be avoided using the PLUM RC in shared decision making while maintaining optimal detection of csPCa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.