In this paper, we demonstrate a first-of-its-kind adaptive intervention in a MOOC utilizing real-time clickstream data and a novel machine learned model of behavior. We detail how we augmented the edX platform with the capabilities necessary to support this type of intervention which required both tracking learners' behaviors in real-time and dynamically adapting content based on each learner's individual clickstream history. Our chosen pilot intervention was in the category of adaptive pathways and courseware and took the form of a navigational suggestion appearing at the bottom of every non-forum content page in the course. We designed our pilot intervention to help students more efficiently navigate their way through a MOOC by predicting the next page they were likely to spend significant time on and allowing them to jump directly to that page. While interventions which attempt to optimize for learner achievement are candidates for this adaptive framework, behavior prediction has the benefit of not requiring causal assumptions to be made in its suggestions. We present a novel extension of a behavioral model that takes into account students' time spent on pages and forecasts the same. Several approaches to representing time using Recurrent Neural Networks are evaluated and compared to baselines without time, including a basic n-gram model. Finally, we discuss design considerations and handling of edge cases for real-time deployment, including considerations for training a machine learned model on a previous offering of a course for use in a subsequent offering where courseware may have changed. This work opens the door to broad experimentation with adaptivity and serves as a first example of delivering a data-driven personalized learning experience in a MOOC.
Digital learning environments generate a precise record of the actions learners take as they interact with learning materials and complete exercises towards comprehension. With this high quantity of sequential data comes the potential to apply time series models to learn about underlying behavioral patterns and trends that characterize successful learning based on the granular record of student actions. There exist several methods for looking at longitudinal, sequential data like those recorded from learning environments. In the field of language modelling, traditional n-gram techniques and modern recurrent neural network (RNN) approaches have been applied to algorithmically find structure in language and predict the next word given the previous words in the sentence or paragraph as input. In this paper, we draw an analogy to this work by treating student sequences of resource views and interactions in a MOOC as the inputs and predicting students' next interaction as outputs. In this study, we train only on students who received a certificate of completion. In doing so, the model could potentially be used for recommendation of sequences eventually leading to success, as opposed to perpetuating unproductive behavior. Given that the MOOC used in our study had over 3,500 unique resources, predicting the exact resource that a student will interact with next might appear to be a difficult classification problem. We find that simply following the syllabus (built-in structure of the course) gives on average 23% accuracy in making this prediction, followed by the n-gram method with 70.4%, and RNN based methods with 72.2%. This research lays the ground work for recommendation in a MOOC and other digital learning environments where high volumes of sequential data exist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.