Intervertebral disc degeneration and associated low back and neck pain is a ubiquitous health condition that affects millions of people world-wide, and causes high incidence of disability and enormous medical/societal costs. However, lack of appropriate small animal models with spontaneous disease onset has impeded our ability to understand the pathogenetic mechanisms that characterize and drive the degenerative process. We report, for the first time, early onset spontaneous disc degeneration in SM/J mice known for their poor regenerative capacities compared to "super-healer" LG/J mice. In SM/J mice, degenerative process was marked by decreased nucleus pulposus (NP) cellularity and changes in matrix composition at P7, 4, and 8 weeks with increased severity by 17 weeks. Distinctions between NP and annulus fibrosus (AF) or endplate cartilage were lost, and NP and AF of SM/J mice showed higher histological grades. There was increased NP cell death in SM/J mice with decreased phenotypic marker expression. Polarized microscopy and FTIR spectroscopy demonstrated replacement of glycosaminoglycan-rich NP matrix with collagenous fibrous tissue. The levels of ARGxx were increased in, indicating higher aggrecan turnover. Furthermore, an aberrant expression of collagen X and MMP13 was observed in the NP of SM/J mice, along with elevated expression of Col10a1, Ctgf, and Runx2, markers of chondrocyte hypertrophy. Likewise, expression of Enpp1 as well as Alpl was higher, suggesting NP cells of SM/J mice promote dystrophic mineralization. There was also a decrease in several pathways necessary for NP cell survival and function including Wnt and VEGF signaling. Importantly, SM/J discs were stiffer, had decreased height, and poor vertebral bone quality, suggesting compromised motion segment mechanical functionality. Taken together, our results clearly demonstrate that SM/J mouse strain recapitulates many salient features of human disc degeneration, and serves as a novel small animal model.
Mice have been increasingly used as preclinical model to elucidate mechanisms and test therapeutics for treating intervertebral disc degeneration (IDD). Several intervertebral disc (IVD) histological scoring systems have been proposed, but none exists that reliably quantitate mouse disc pathologies. Here, we report a new robust quantitative mouse IVD histopathological scoring system developed by building consensus from the spine community analyses of previous scoring systems and features noted on different mouse models of IDD. The new scoring system analyzes 14 key histopathological features from nucleus pulposus (NP), annulus fibrosus (AF), endplate (EP), and AF/NP/EP interface regions. Each feature is categorized and scored; hence, the weight for quantifying the Itzel Paola Melgoza and Srish S. Chenna contributed equally to this work
Chronic low back and neck pain are associated with intervertebral disc degeneration and are major contributors to the global burden of disability. New evidence now suggests that disc degeneration comprises a spectrum of subphenotypes influenced by genetic background, age, and environmental factors, which may be contributing to the mixed outcomes seen in clinical trials of cell‐based therapies that aim to treat disc degeneration. This problem is further compounded by the fact that disc degeneration and aging coincide with an exhaustion of endogenous progenitor cells, imposing limitations on the regenerative capacity of the disc. At the bench‐side, current work is focused on applying our knowledge of embryonic disc development to direct and refine differentiation of adult and human‐induced pluripotent stem cells into notochord‐like and nucleus pulposus‐like cells for use in novel cell‐based therapies. Accordingly, this review presents the salient features of intervertebral disc development, post‐natal maintenance, and regeneration, with emphasis on recent advancements. We also discuss how a stratified approach can be undertaken for the development of future cell‐based therapies to bring emerging subphenotypes into consideration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.