Awake animal imaging is becoming an important tool in behavioral neuroscience and preclinical drug discovery. Non-invasive ultra-high-field, functional magnetic resonance imaging (fMRI) provides a window to the mind, making it possible to image changes in brain activity across distributed, integrated neural circuits with high temporal and spatial resolution. In theory, changes in brain function, anatomy, and chemistry can be recorded in the same animal from early life into old age under stable or changing environmental conditions. This prospective capability of animal imaging to follow changes in brain neurobiology after genetic or environmental insult has great value to the fields of psychiatry and neurology and probably stands as the key advantage of MRI over other methods in the neuroscience toolbox. In addition, awake animal imaging offers the ability to record signal changes across the entire brain in seconds. When combined with the use of 3D segmented, annotated, brain atlases, and computational analysis, it is possible to reconstruct distributed, integrated neural circuits or 'fingerprints' of brain activity. These fingerprints can be used to characterize the activity and function of new psychotherapeutics in preclinical development and to study the neurobiology of integrated neural circuits controlling cognition and emotion. In this review, we describe the methods used to image awake animals and the recent advances in the radiofrequency electronics, pulse sequences, and the development of 3D segmented atlases and software for image analysis. Results from pharmacological MRI studies and from studies using provocation paradigms to elicit emotional responses are provided as a small sample of the number of different applications possible with awake animal imaging.
Blood oxygen level dependent (BOLD) imaging in awake mice was used to identify differences in brain activity between wild-type, HETzQ175, and HOMzQ175 genotypes in response to the odor of almond. The study was designed to see how alterations in the huntingtin gene in a mouse model of Huntington’s disease would affect the perception and processing of almond odor, an evolutionarily conserved stimulus with high emotional and motivational valence. Moreover, the mice in this study were “odor naïve,” i.e., never having smelled almond or any nuts. Using a segmented, annotated MRI atlas of the mouse and computational analysis, 17 out of 116 brain regions were identified as responding differently to almond odor across genotypes. These regions included the glomerulus of the olfactory bulb, forebrain cortex, anterior cingulate, subiculum, and dentate gyrus of the hippocampus, and several areas of the hypothalamus. In many cases, these regions showed a gene-dose effect with HETzQ175 mice showing a reduction in brain activity from wild-type that is further reduced in HOMzQ175 mice. Conspicuously absent were any differences in brain activity in the caudate/putamen, thalamus, CA3, and CA1 of the hippocampus and much of the cortex. The glomerulus of the olfactory bulb in HOMzQ175 mice showed a reduced change in BOLD signal intensity in response to almond odor as compared to the other phenotypes suggesting a deficit in olfactory sensitivity.
The advancement of neuroscience depends on continued improvement in methods and models. Here, we present novel techniques for the use of awake functional magnetic resonance imaging (fMRI) in the prairie vole (Microtus ochrogaster) - an important step forward in minimally-invasive measurement of neural activity in a non-traditional animal model. Imaging neural responses in prairie voles, a species studied for its propensity to form strong and selective social bonds, is expected to greatly advance our mechanistic understanding of complex social and affective processes. The use of ultra-high-field fMRI allows for recording changes in region-specific activity throughout the entire brain simultaneously and with high temporal and spatial resolution. By imaging neural responses in awake animals, with minimal invasiveness, we are able to avoid the confound of anesthesia, broaden the scope of possible stimuli, and potentially make use of repeated scans from the same animals. These methods are made possible by the development of an annotated and segmented 3D vole brain atlas and software for image analysis. The use of these methods in the prairie vole provides an opportunity to broaden neuroscientific investigation of behavior via a comparative approach, which highlights the ethological relevance of pro-social behaviors shared between voles and humans, such as communal breeding, selective social bonds, social buffering of stress, and caregiving behaviors. Results using these methods show that fMRI in the prairie vole is capable of yielding robust blood oxygen level dependent (BOLD) signal changes in response to hypercapnic challenge (inhaled 5% CO2), region-specific physical challenge (unilateral whisker stimulation), and presentation of a set of novel odors. Complementary analyses of repeated restraint sessions in the imaging hardware suggest that voles do not require acclimation to this procedure. Taken together, awake vole fMRI represents a new arena of neurobiological study outside the realm of traditional rodent models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.