Cystic fibrosis (CF) patients receive repeated courses of aminoglycoside therapy. These patients would consequently be expected to be more susceptible to cochleotoxicity, a recognized side effect with single courses of aminoglycoside therapy. The primary aim of this retrospective study was to establish the incidence and severity of auditory deficit in CF patients. Standard (0.25-to 8-kHz) and high-frequency (10-to 16-kHz) pure-tone audiometry was carried out in 70 CF patients, and the results were compared with the results from 91 control subjects. These subjects were further divided into pediatric and adult groups. Of 70 CF patients, 12 (1 pediatric) displayed hearing loss considered to be caused by repeated exposure to aminoglycosides. There was a nonlinear relationship between the courses of therapy received and the incidence of hearing loss. The severity of the loss did not appear to be related to the number of courses received. Assuming the risk of loss to be independent for each course, preliminary estimates of per course risk of hearing loss were less than 2%. Upon comparison with previous clinical studies and experimental work, these findings suggest that the incidence of cochleotoxicity in CF patients is considerably lower than would be expected, suggesting that the CF condition may confer protection against aminoglycoside cochleotoxicity.
We have proposed that since the type II pyrethroids deltamethrin and cypermethrin, but not the type I pyrethroid cismethrin act on chloride channels, this could contribute to the bimodal nature of pyrethroid poisoning syndromes. We now examine a wider range of pyrethroid structures on the activity of these calcium-independent voltage-gated maxi-chloride channels. Excised inside-out membrane patches from differentiated mouse neuroblastoma cells were used, and mean channel open probabilities calculated. For single dosing at 10 microM, bioallethrin, beta-cyfluthrin, cypermethrin, deltamethrin, and fenpropathrin were all found to significantly decrease open channel probability (p < 0.05). Bifenthrin, bioresmethrin, cispermethrin, cisresmethrin, cyfluthrin isomers 2 and 4, lambda-cyhalothrin, esfenvalerate, and tefluthrin, did not significantly alter open channel probability (p > 0.05). Since the type II pyrethroids, esfenvalerate, and lambda-cyhalothrin were ineffective, we must conclude that actions at the chloride ion channel target cannot in themselves account for the differences between the two types of poisoning syndrome. Sequential dosing with type II pyrethroids caused no further chloride ion channel closure. The type I pyrethroid cisresmethrin did however prevent a subsequent effect by the mixed type pyrethroid fenpropathrin. In contrast, the type I pyrethroid cispermethrin did not prevent a subsequent effect due to the type II pyrethroid deltamethrin. The difference in effect may be the result of differences in potency, as deltamethrin had a greater effect than fenpropathrin. It therefore appears clear that in some combinations the type I and type II pyrethroids can compete and may bind to the same chloride channel target site.
An extract of Mangifera pajang kernel has been previously found to contain a high content of antioxidant phytochemicals. The present research was conducted to investigate the anticancer potential of this kernel extract. The results showed that the kernel crude extract induced cytotoxicity in MCF-7 (hormone-dependent breast cancer) cells and MDA-MB-231 (non-hormone dependent breast cancer) cells with IC50 values of 23 and 30.5 microg/ml, respectively. The kernel extract induced cell cycle arrest in MCF-7 cells at the sub-G1 (apoptosis) phase of the cell cycle in a time-dependent manner. For MDA-MB-231 cells, the kernel extract induced strong G2-M arrest in cell cycle progression at 24h, resulting in substantial sub-G1 (apoptosis) arrest after 48 and 72 h of incubation. Staining with Annexin V-FITC and propidium iodide revealed that this apoptosis occurred early in both cell types, 36 h for MCF-7 cells and 24 h for MDA-MB-231 cells, with 14.0% and 16.5% of the cells respectively undergoing apoptosis at these times. This apoptosis appeared to be dependent on caspase-2 and -3 in MCF-7 cells, and on caspase-2, -3 and -9 in MDA-MB-231 cells. These findings suggest that M. pajang kernel extract has potential as a potent cytotoxic agent against breast cancer cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.