SUMMARY Suction feeding fish draw prey into the mouth using a flow field that they generate external to the head. In this paper we present a multidimensional perspective on suction feeding performance that we illustrate in a comparative analysis of suction feeding ability in two members of Centrarchidae, the largemouth bass (Micropterus salmoides) and bluegill sunfish(Lepomis macrochirus). We present the first direct measurements of maximum fluid speed capacity, and we use this to calculate local fluid acceleration and volumetric flow rate. We also calculated the ingested volume and a novel metric of strike accuracy. In addition, we quantified for each species the effects of gape magnitude, time to peak gape, and swimming speed on features of the ingested volume of water. Digital particle image velocimetry (DPIV) and high-speed video were used to measure the flow in front of the mouths of three fish from each species in conjunction with a vertical laser sheet positioned on the mid-sagittal plane of the fish. From this we quantified the maximum fluid speed (in the earthbound and fish's frame of reference), acceleration and ingested volume. Our method for determining strike accuracy involved quantifying the location of the prey relative to the center of the parcel of ingested water. Bluegill sunfish generated higher fluid speeds in the earthbound frame of reference, accelerated the fluid faster, and were more accurate than largemouth bass. However, largemouth bass ingested a larger volume of water and generated a higher volumetric flow rate than bluegill sunfish. In addition, because largemouth bass swam faster during prey capture, they generated higher fluid speeds in the fish's frame of reference. Thus, while bluegill can exert higher drag forces on stationary prey items, largemouth bass more quickly close the distance between themselves and prey. The ingested volume and volumetric flow rate significantly increased as gape increased for both species, while time to peak gape had little effect on the volume. However, peak gape distance did not affect the maximum fluid speed entering the mouth for either species. We suggest that species that generate high fluid speeds in the earthbound frame of reference will commonly exhibit small mouths and a high capacity to deliver force to buccal expansion,while species that ingest a large volume of water and generate high volumetric flow rates will have larger buccal cavities and cranial expansion linkage systems that favor displacement over force delivery.
, demonstrating a strong relationship between the rate of buccal cavity expansion and maximum generated flow speed.
This study is part of a FDA-sponsored project to evaluate the use and limitations of computational fluid dynamics (CFD) in assessing blood flow parameters related to medical device safety. In an interlaboratory study, fluid velocities and pressures were measured in a nozzle model to provide experimental validation for a companion round-robin CFD study. The simple benchmark nozzle model, which mimicked the flow fields in several medical devices, consisted of a gradual flow constriction, a narrow throat region, and a sudden expansion region where a fluid jet exited the center of the nozzle with recirculation zones near the model walls. Measurements of mean velocity and turbulent flow quantities were made in the benchmark device at three independent laboratories using particle image velocimetry (PIV). Flow measurements were performed over a range of nozzle throat Reynolds numbers (Re(throat)) from 500 to 6500, covering the laminar, transitional, and turbulent flow regimes. A standard operating procedure was developed for performing experiments under controlled temperature and flow conditions and for minimizing systematic errors during PIV image acquisition and processing. For laminar (Re(throat)=500) and turbulent flow conditions (Re(throat)≥3500), the velocities measured by the three laboratories were similar with an interlaboratory uncertainty of ∼10% at most of the locations. However, for the transitional flow case (Re(throat)=2000), the uncertainty in the size and the velocity of the jet at the nozzle exit increased to ∼60% and was very sensitive to the flow conditions. An error analysis showed that by minimizing the variability in the experimental parameters such as flow rate and fluid viscosity to less than 5% and by matching the inlet turbulence level between the laboratories, the uncertainties in the velocities of the transitional flow case could be reduced to ∼15%. The experimental procedure and flow results from this interlaboratory study (available at http://fdacfd.nci.nih.gov) will be useful in validating CFD simulations of the benchmark nozzle model and in performing PIV studies on other medical device models.
Despite almost 50 years of research on the functional morphology and biomechanics of suction feeding, no consensus has emerged on how to characterize suction-feeding performance, or its morphological basis. We argue that this lack of unity in the literature is due to an unusually indirect and complex linkage between the muscle contractions that power suction feeding, the skeletal movements that underlie buccal expansion, the sharp drop in buccal suction pressure that occurs during expansion, the flow of water that enters the mouth to eliminate the pressure gradient, and the forces that are ultimately exerted on the prey by this flow. This complexity has led various researchers to focus individually on suction pressure, flow velocity, or the distance the prey moves as metrics of suction-feeding performance. We attempt to integrate a mechanistic view of the ability of fish to perform these components of suction feeding. We first discuss a model that successfully relates aspects of cranial morphology to the capacity to generate suction pressure in the buccal cavity. This model is a particularly valuable tool for studying the evolution of the feeding mechanism. Second, we illustrate the multidimensional nature of suction-feeding performance in a comparison of bluegill, Lepomis macrochirus, and largemouth bass, Micropterus salmoides, two species that represent opposite ends of the spectrum of performance in suction feeding. As anticipated, bluegills had greater accuracy, lower peak flux into the mouth, and higher flow velocity and acceleration of flow than did bass. While the differences between species in accuracy of strike and peak water flux were substantial, peak suction velocity and acceleration were only about 50% higher in bluegill, a relatively modest difference. However, a hydrodynamic model of the forces that suction feeders exert on their prey shows that this difference in velocity is amplified by a positive effect of the smaller mouth aperture of bluegill on force exerted on the prey. Our model indicates that the pressure gradient in front of a fish that is feeding by suction, associated with the gradient in water velocity, results in a force on the prey that is larger than drag or acceleration reaction. A smaller mouth aperture results in a steeper pressure gradient that exerts a greater force on the prey, even when other features of the suction flow are held constant. Our work shows that some aspects of suction-feeding performance can be determined from morphology, but that the complexity of the behavior requires a diversity of perspectives to be used in order to adequately characterize performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.