LIGHT, a member of the TNF family of cytokines (homologous to lymphotoxin, exhibits inducible expression and competes with HSV glycoprotein D for herpesvirus entry mediator, a receptor expressed on T cells), is induced on activated T cells and mediates costimulatory and antitumor activity in vitro. Relatively little information is available on the in vivo effects of LIGHT expression, particularly within the T cell compartment. In this work, we describe transgenic mice that express human LIGHT under the control of the CD2 promoter, resulting in constitutive transgene expression in cells of the T lymphocyte lineage. LIGHT-transgenic animals exhibit abnormalities in both lymphoid tissue architecture and the distribution of lymphocyte subsets. They also show signs of inflammation that are most severe in the intestine, along with tissue destruction of the reproductive organs. These LIGHT-mediated effects were recapitulated when immune-deficient mice were reconstituted with bone marrow from LIGHT-transgenic donor mice. T cells in the LIGHT-transgenic mice have an activated phenotype and mucosal T cells exhibit enhanced Th1 cytokine activity. The results indicate that LIGHT may function as an important regulator of T cell activation, and implicate LIGHT signaling pathways in inflammation focused on mucosal tissues.
Antibody neutralization is an important component of protective immunity against vaccinia virus (VACV).Two distinct virion forms, mature virion and enveloped virion (MV and EV, respectively), possess separate functions and nonoverlapping immunological properties. In this study we examined the mechanics of EV neutralization, focusing on EV protein B5 (also called B5R). We show that neutralization of EV is predominantly complement dependent. From a panel of high-affinity anti-B5 monoclonal antibodies (MAbs), the only potent neutralizer in vitro (90% at 535 ng/ml) was an immunoglobulin G2a (IgG2a), and neutralization was complement mediated. This MAb was the most protective in vivo against lethal intranasal VACV challenge. Further studies demonstrated that in vivo depletion of complement caused a >50% loss of anti-B5 IgG2a protection, directly establishing the importance of complement for protection against the EV form. However, the mechanism of protection is not sterilizing immunity via elimination of the inoculum as the viral inoculum consisted of a purified MV form. The prevention of illness in vivo indicated rapid control of infection. We further demonstrate that antibody-mediated killing of VACV-infected cells expressing surface B5 is a second protective mechanism provided by complement-fixing anti-B5 IgG. Cell killing was very efficient, and this effector function was highly isotype specific. These results indicate that anti-B5 antibody-directed cell lysis via complement is a powerful mechanism for clearance of infected cells, keeping poxvirus-infected cells from being invisible to humoral immune responses. These findings highlight the importance of multiple mechanisms of antibody-mediated protection against VACV and point to key immunobiological differences between MVs and EVs that impact the outcome of infection.Vaccines are one of the most cost-effective medical treatments in modern civilization (80). A smallpox vaccine was the first human vaccine, and the modern smallpox vaccine, live vaccinia virus (VACV), is the most successful human vaccine, bringing about the worldwide eradication of smallpox disease due to a heroic World Health Organization campaign in the 1960s and 1970s (27). Elucidating the immunobiology underlying the protection provided by the smallpox vaccine will continue to reveal vaccinology principles that can be applied to future vaccine development against other infectious scourges (95). Neutralizing antibodies are of primary importance in the protection from smallpox provided by the smallpox vaccine in animal models (6,25,33,64) and humans (4). Vaccinia immune globulin (VIG) has been shown to be an effective treatment against smallpox (45) as it was able to reduce the number of smallpox cases by ϳ80% among exposed individuals in four case-controlled studies (42,45,50,51,66).Neutralizing antibodies confer protection mainly through the recognition of structures on the surface of virus particles, and therefore antiviral antibodies directed against the surface of virions are of primary inter...
The importance of lymphotoxin (LT) βR (LTβR) as a regulator of lymphoid organogenesis is well established, but its role in host defense has yet to be fully defined. In this study, we report that mice deficient in LTβR signaling were highly susceptible to infection with murine CMV (MCMV) and early during infection exhibited a catastrophic loss of T and B lymphocytes, although the majority of lymphocytes were themselves not directly infected. Moreover, bone marrow chimeras revealed that lymphocyte survival required LTα expression by hemopoietic cells, independent of developmental defects in lymphoid tissue, whereas LTβR expression by both stromal and hemopoietic cells was needed to prevent apoptosis. The induction of IFN-β was also severely impaired in MCMV-infected LTα−/− mice, but immunotherapy with an agonist LTβR Ab restored IFN-β levels, prevented lymphocyte death, and enhanced the survival of these mice. IFN-αβR−/− mice were also found to exhibit profound lymphocyte death during MCMV infection, thus providing a potential mechanistic link between type 1 IFN induction and lymphocyte survival through a LTαβ-dependent pathway important for MCMV host defense.
Vaccinia virus possesses two immunologically distinct virion forms in vivo-mature virion (MV, IMV) and extracellular virion (EV, EEV). Here we show that combination therapy with two fully human mAbs against an immunodominant MV antigen, H3 (H3L), and an EV antigen, B5 (B5R), provides significantly better protection against vaccinia infection in a small animal model of progressive vaccinia (SCID mice infected with VACV NYCBOH vaccine strain) than a single human monoclonal or human vaccinia immune globulin (VIG), the currently licensed therapeutic for side effects of smallpox vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.