Recent studies using retroviral labeling of subventricular zone (SVZ) progenitors in vivo in neonatal rats have directly demonstrated the generation of both astrocytes and oligodendrocytes from these progenitors. In the present study, we used a recombinant retroviral vector encoding beta-galactosidase, and analyzed brains within the first week after retroviral injection to trace the early routes that SVZ cells take as they migrate into white matter and cortex and characterized the early morphological and antigenic changes that accompanied their differentiation. SVZ cells follow specifically definable migratory routes as they colonize the cortex and subcortical white matter. Glial progenitors do not populate the cortex in a systematic, laminar fashion, as do neuroblasts. The abundance of labeled progenitors in radial arrangements and the close apposition of many immature cells to vimentin+ radial glial processes, suggest that glial progenitors migrate along radial glia. Labeled SVZ cells, which displayed a simple, unipolar or bipolar morphology, lacked detectable vimentin and nestin intermediate filaments. Similarly, beta-galactosidase-positive cells in white matter lacked these filaments. In contrast, labeled, multipolar cells in the cortex, and a few of the immature-appearing cortical cells expressed nestin and vimentin. At these early time points, GFAP was not detected in beta-galactosidase-labeled cells. Multipolar cells in cortex frequently displayed processes extending toward and contacting blood vessels. These observations suggest that the expression of nestin and vimentin occurs after progenitors emigrate from the SVZ and that filament expression and contact with blood vessels represent an early stage of astrocyte differentiation.
Interleukin-1 (IL-1) is induced immediately after insults to the brain, and elevated levels of IL-1 have been strongly implicated in the neurodegeneration that accompanies stroke, Alzheimer's disease, and multiple sclerosis. In animal models, antagonizing IL-1 has been shown to reduce cell death; however, the basis for this protection has not been elucidated. Here we analyzed the response to penetrating brain injury in mice lacking the type 1 IL-1 receptor (IL-1R1) to determine which cellular and molecular mediators of tissue damage require IL-1 signaling. At the cellular level, fewer amoeboid microglia/macrophages appeared adjacent to the injured brain tissue in IL-1R1 null mice, and those microglia present at early postinjury intervals retained their resting morphology. Astrogliosis also was mildly abrogated. At the molecular level, cyclooxygenase-2 (Cox-2) and IL-6 expression were depressed and delayed. Interestingly, basal levels of Cox-2, IL-1, and IL-6 were significantly lower in the IL-1R1 null mice. In addition, stimulation of vascular cell adhesion molecule-1 mRNA was depressed in the IL-1R1 null mice, and correspondingly, there was reduced diapedesis of peripheral macrophages in the IL-1R1 null brain after injury. This observation correlated with a reduced number of Cox-2+ amoeboid phagocytes adjacent to the injury. In contrast, several molecular aspects of the injury response were normal, including expression of tumor necrosis factor-alpha and the production of nerve growth factor. Because antagonizing IL-1 protects neural cells in experimental models of stroke and multiple sclerosis, our data suggest that cell preservation is achieved by abrogating microglial/macrophage activation and the subsequent self-propagating cycle of inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.