Orthodontic tooth movement occurs as a result of resorption and formation of the alveolar bone due to an applied load, but the stimulus responsible for triggering orthodontic tooth movement remains the subject of debate. It has been suggested that the periodontal ligament (PDL) plays a key role. However, the mechanical function of the PDL in orthodontic tooth movement is not well understood as most mechanical models of the PDL to date have ignored the fibrous structure of the PDL. In this study we use finite element (FE) analysis to investigate the strains in the alveolar bone due to occlusal and orthodontic loads when PDL is modelled as a fibrous structure as compared to modelling PDL as a layer of solid material. The results show that the tension-only nature of the fibres essentially suspends the tooth in the tooth socket and their inclusion in FE models makes a significant difference to both the magnitude and distribution of strains produced in the surrounding bone. The results indicate that the PDL fibres have a very important role in load transfer between the teeth and alveolar bone and should be considered in FE studies investigating the biomechanics of orthodontic tooth movement.
Alveolar bone remodelling is vital for the success of dental implants and orthodontic treatments. However, the underlying biomechanical mechanisms, in particular the function of the periodontal ligament (PDL) in bone loading and remodelling, are not well understood. The PDL is a soft fibrous connective tissue that joins the tooth root to the alveolar bone and plays a critical role in the transmission of loads from the tooth to the surrounding bone. However, due to its complex structure, small size and location within the tooth socket it is difficult to study in vivo. Finite element analysis (FEA) is an ideal tool with which to investigate the role of the PDL, however inclusion of the PDL in FE models is complex and time consuming, therefore consideration must be given to how it is included. The aim of this study was to investigate the effects of including the PDL and its fibrous structure in mandibular finite element models. A high-resolution model of a human molar region was created from micro-computed tomography scans. This is the first time that the fibrous structure of the PDL has been included in a model with realistic tooth and bone geometry. The results show that omission of the PDL creates a more rigid model, reducing the strains observed in the mandibular corpus which are of interest when considering mandibular functional morphology. How the PDL is modelled also affects the strains. The inclusion of PDL fibres alters the strains in the mandibular bone, increasing the strains in the tooth socket compared to PDL modelled without fibres. As strains in the alveolar bone are thought to play a key role in bone remodelling during orthodontic tooth movement, future FE analyses aimed at improving our understanding and management of orthodontic treatment should include the fibrous structure of the PDL.
Multi-body dynamics is a powerful engineering tool which is becoming increasingly popular for the simulation and analysis of skull biomechanics. This paper presents the first application of multi-body dynamics to analyse the biomechanics of the rabbit skull. A model has been constructed through the combination of manual dissection and three-dimensional imaging techniques (magnetic resonance imaging and micro-computed tomography). Individual muscles are represented with multiple layers, thus more accurately modelling muscle fibres with complex lines of action. Model validity was sought through comparing experimentally measured maximum incisor bite forces with those predicted by the model. Simulations of molar biting highlighted the ability of the masticatory system to alter recruitment of two muscle groups, in order to generate shearing or crushing movements. Molar shearing is capable of processing a food bolus in all three orthogonal directions, whereas molar crushing and incisor biting are predominately directed vertically. Simulations also show that the masticatory system is adapted to process foods through several cycles with low muscle activations, presumably in order to prevent rapidly fatiguing fast fibres during repeated chewing cycles. Our study demonstrates the usefulness of a validated multi-body dynamics model for investigating feeding biomechanics in the rabbit, and shows the potential for complementing and eventually reducing in vivo experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.