cIdentification of management practices associated with preharvest pathogen contamination of produce fields is crucial to the development of effective Good Agricultural Practices (GAPs). A cross-sectional study was conducted to (i) determine management practices associated with a Salmonella-or Listeria monocytogenes-positive field and (ii) quantify the frequency of these pathogens in irrigation and nonirrigation water sources. Over 5 weeks, 21 produce farms in New York State were visited. Fieldlevel management practices were recorded for 263 fields, and 600 environmental samples (soil, drag swab, and water) were collected and analyzed for Salmonella and L. monocytogenes. Management practices were evaluated for their association with the presence of a pathogen-positive field. Salmonella and L. monocytogenes were detected in 6.1% and 17.5% of fields (n ؍ 263) and 11% and 30% of water samples (n ؍ 74), respectively. The majority of pathogen-positive water samples were from nonirrigation surface water sources. Multivariate analysis showed that manure application within a year increased the odds of a Salmonellapositive field (odds ratio [OR], 16.7), while the presence of a buffer zone had a protective effect (OR, 0.1). Irrigation (within 3 days of sample collection) (OR, 6.0), reported wildlife observation (within 3 days of sample collection) (OR, 6.1), and soil cultivation (within 7 days of sample collection) (OR, 2.9) all increased the likelihood of an L. monocytogenes-positive field. Our findings provide new data that will assist growers with science-based evaluation of their current GAPs and implementation of preventive controls that reduce the risk of preharvest contamination.
Multidrug-resistant (MDR) Salmonella enterica can be spread from cattle to humans through direct contact with animals shedding Salmonella as well as through the food chain, making MDR Salmonella a serious threat to human health. The objective of this study was to use whole-genome sequencing to compare antimicrobial-resistant (AMR) Salmonella enterica serovars Typhimurium, Newport, and Dublin isolated from dairy cattle and humans in Washington State and New York State at the genotypic and phenotypic levels. A total of 90 isolates were selected for the study (37 S. Typhimurium, 32 S. Newport, and 21 S. Dublin isolates). All isolates were tested for phenotypic antibiotic resistance to 12 drugs using Kirby-Bauer disk diffusion. AMR genes were detected in the assembled genome of each isolate using nucleotide BLAST and ARG-ANNOT. Genotypic prediction of phenotypic resistance resulted in a mean sensitivity of 97.2 and specificity of 85.2. Sulfamethoxazole-trimethoprim resistance was observed only in human isolates (P Ͻ 0.05), while resistance to quinolones and fluoroquinolones was observed only in 6 S. Typhimurium isolates from humans in Washington State. S. Newport isolates showed a high degree of AMR profile similarity, regardless of source. S. Dublin isolates from New York State differed from those from Washington State based on the presence/absence of plasmid replicons, as well as phenotypic AMR susceptibility/nonsusceptibility (P Ͻ 0.05). The results of this study suggest that distinct factors may contribute to the emergence and dispersal of AMR S. enterica in humans and farm animals in different regions.IMPORTANCE The use of antibiotics in food-producing animals has been hypothesized to select for AMR Salmonella enterica and associated AMR determinants, which can be transferred to humans through different routes. Previous studies have sought to assess the degree to which AMR livestock-and human-associated Salmonella strains overlap, as well as the spatial distribution of Salmonella's associated AMR determinants, but have often been limited by the degree of resolution at which isolates can be compared. Here, a comparative genomics study of livestock-and humanassociated Salmonella strains from different regions of the United States shows that while many AMR genes and phenotypes were confined to human isolates, overlaps between the resistomes of bovine and human-associated Salmonella isolates were observed on numerous occasions, particularly for S. Newport. We have also shown that whole-genome sequencing can be used to reliably predict phenotypic resistance across Salmonella isolated from bovine sources.
Sampling of agricultural and natural environments in two US states (Colorado and Florida) yielded 18 Listeria-like isolates that could not be assigned to previously described species using traditional methods. Using whole-genome sequencing and traditional phenotypic methods, we identified five novel species, each with a genome-wide average blast nucleotide identity (ANIb) of less than 85 % to currently described species. Phylogenetic analysis based on 16S rRNA gene sequences and amino acid sequences of 31 conserved loci showed the existence of four well-supported clades within the genus Listeria ; (i) a clade representing Listeria monocytogenes , L. marthii , L. innocua , L. welshimeri , L. seeligeri and L. ivanovii , which we refer to as Listeria sensu stricto, (ii) a clade consisting of Listeria fleischmannii and two newly described species, Listeria aquatica sp. nov. (type strain FSL S10-1188T = DSM 26686T = LMG 28120T = BEI NR-42633T) and Listeria floridensis sp. nov. (type strain FSL S10-1187T = DSM 26687T = LMG 28121T = BEI NR-42632T), (iii) a clade consisting of Listeria rocourtiae , L. weihenstephanensis and three novel species, Listeria cornellensis sp. nov. (type strain TTU A1-0210T = FSL F6-0969T = DSM 26689T = LMG 28123T = BEI NR-42630T), Listeria grandensis sp. nov. (type strain TTU A1-0212T = FSL F6-0971T = DSM 26688T = LMG 28122T = BEI NR-42631T) and Listeria riparia sp. nov. (type strain FSL S10-1204T = DSM 26685T = LMG 28119T = BEI NR- 42634T) and (iv) a clade containing Listeria grayi . Genomic and phenotypic data suggest that the novel species are non-pathogenic.
Postprocessing contamination in processing plants has historically been a significant source of Listeria monocytogenes in ready-to-eat delicatessen meats, and therefore a major cause of human listeriosis cases and outbreaks. Recent risk assessments suggest that a majority of human listeriosis cases linked to consumption of contaminated deli meats may be due to L. monocytogenes contamination that occurs at the retail level. To better understand the ecology and transmission of Listeria spp. in retail delicatessens, food and nonfood contact surfaces were tested for L. monocytogenes and other Listeria spp. in a longitudinal study conducted in 30 retail delis in three U.S. states. In phase I of the study, seven sponge samples were collected monthly for 3 months in 15 delis (5 delis per state) prior to start of daily operation; in phase II, 28 food contact and nonfood contact sites were sampled in each of 30 delis during daily operation for 6 months. Among the 314 samples collected during phase I, 6.8% were positive for L. monocytogenes. Among 4,503 samples collected during phase II, 9.5% were positive for L. monocytogenes; 9 of 30 delis showed low L. monocytogenes prevalence (<1%) for all surfaces. A total of 245 Listeria spp. isolates, including 184 Listeria innocua, 48 Listeria seeligeri, and 13 Listeria welshimeri were characterized. Pulsed-field gel electrophoresis (PFGE) was used to characterize 446 L. monocytogenes isolates. PFGE showed that for 12 of 30 delis, one or more PFGE types were isolated on at least three separate occasions, providing evidence for persistence of a given L. monocytogenes subtype in the delis. For some delis, PFGE patterns for isolates from nonfood contact surfaces were distinct from patterns for occasional food contact surface isolates, suggesting limited cross-contamination between these sites in some delis. This study provides longitudinal data on L. monocytogenes contamination patterns in retail delis, which should facilitate further development of control strategies in retail delis.
Listeria monocytogenes persistence in food processing plants is a key source of postprocessing contamination of ready-to-eat foods. Thus, identification and elimination of sites where L. monocytogenes persists (niches) is critical. Two smoked fish processing plants were used as models to develop and implement environmental sampling plans (i) to identify persistent L. monocytogenes subtypes (EcoRI ribotypes) using two statistical approaches and (ii) to identify and eliminate likely L. monocytogenes niches. The first statistic, a binomial test based on ribotype frequencies, was used to evaluate L. monocytogenes ribotype recurrences relative to reference distributions extracted from a public database; the second statistic, a binomial test based on previous positives, was used to measure ribotype occurrences as a risk factor for subsequent isolation of the same ribotype. Both statistics revealed persistent ribotypes in both plants based on data from the initial 4 months of sampling. The statistic based on ribotype frequencies revealed persistence of particular ribotypes at specific sampling sites. Two adaptive sampling strategies guided plant interventions during the study: sampling multiple times before and during processing and vector swabbing (i.e., sampling of additional sites in different directions [vectors] relative to a given site). Among sites sampled for 12 months, a Poisson model regression revealed borderline significant monthly decreases in L. monocytogenes isolates at both plants (P = 0.026 and 0.076). Our data indicate elimination of an L. monocytogenes niche on a food contact surface; niches on nonfood contact surfaces were not eliminated. Although our data illustrate the challenge of identifying and eliminating L. monocytogenes niches, particularly at nonfood contact sites in small and medium plants, the methods for identification of persistence we describe here should broadly facilitate science-based identification of microbial persistence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.