ObjectivesThe ultimate goal of biomedical research is the development of new treatment options for patients. Animal models are used if questions cannot be addressed otherwise. Currently, it is widely believed that a large fraction of performed studies are never published, but there are no data that directly address this question.MethodsWe have tracked a selection of animal study protocols approved in the University Medical Center Utrecht in the Netherlands, to assess whether these have led to a publication with a follow-up period of 7 years.ResultsWe found that 60% of all animal study protocols led to at least one publication (full text or abstract). A total of 5590 animals were used in these studies, of which 26% was reported in the resulting publications.ConclusionsThe data presented here underline the need for preclinical preregistration, in view of the risk of reporting and publication bias in preclinical research. We plea that all animal study protocols should be prospectively registered on an online, accessible platform to increase transparency and data sharing. To facilitate this, we have developed a platform dedicated to animal study protocol registration: www.preclinicaltrials.eu.
Background: Ischemia-reperfusion and cardiac remodeling is associated with cardiomyocyte death, excessive fibrosis formation, and functional decline, eventually resulting in heart failure (HF). Glucagon-like peptide (GLP)-1 agonists are reported to reduce apoptosis and myocardial infarct size after ischemia-reperfusion. Moreover, mineralocorticoid receptor antagonists (MRAs) have been described to reduce reactive fibrosis and improve cardiac function. Here, we investigated whether combined treatment with GLP-1R agonist exenatide and MRA potassium canrenoate could minimize cardiac injury and limit HF progression in animal models of chronic HF.Methods and Results: Forty female Topigs Norsvin pigs were subjected to 150 min balloon occlusion of the left anterior descending artery (LAD). Prior to reperfusion, pigs were randomly assigned to placebo or combination therapy (either low dose or high dose). Treatment was applied for two consecutive days or for 8 weeks with a continued high dose via a tunneled intravenous catheter. Using 2,3,5-Triphenyltetrazolium chloride (TTC) staining we observed that combination therapy did not affect the scar size after 8 weeks. In line, left ventricular volume and function assessed by three-dimensional (3D) echocardiography (baseline, 7 days and 8 weeks), and cardiac magnetic resonance imaging (CMR, 8 weeks) did not differ between experimental groups. In addition, 36 C57Bl/6JRj mice underwent permanent LAD-occlusion and were treated with either placebo or combination therapy prior to reperfusion, for two consecutive days via intravenous injection, followed by continued treatment via placement of osmotic mini-pumps for 28 days. Global cardiac function, assessed by 3D echocardiography performed at baseline, 7, 14, and 28 days, did not differ between treatment groups. Also, no differences were observed in cardiac hypertrophy, assessed by heart weight/bodyweight and heart weight/tibia length ratio.Conclusion: In the current study, combined treatment with GLP-1R agonist exenatide and MR antagonist potassium canrenoate did not show beneficial effects on cardiac remodeling nor resulted in functional improvement in a small and large animal chronic HF model.
Many cardiac catheter interventions require accurate discrimination between healthy and infarcted myocardia. The gold standard for infarct imaging is late gadolinium–enhanced MRI (LGE-MRI), but during cardiac procedures electroanatomical or electromechanical mapping (EAM or EMM, respectively) is usually employed. We aimed to improve the ability of EMM to identify myocardial infarction by combining multiple EMM parameters in a statistical model. From a porcine infarction model, 3D electromechanical maps were 3D registered to LGE-MRI. A multivariable mixed-effects logistic regression model was fitted to predict the presence of infarct based on EMM parameters. Furthermore, we correlated feature-tracking strain parameters to EMM measures of local mechanical deformation. We registered 787 EMM points from 13 animals to the corresponding MRI locations. The mean registration error was 2.5 ± 1.16 mm. Our model showed a strong ability to predict the presence of infarction (C-statistic = 0.85). Strain parameters were only weakly correlated to EMM measures. The model is accurate in discriminating infarcted from healthy myocardium. Unipolar and bipolar voltages were the strongest predictors.Electronic supplementary materialThe online version of this article (10.1007/s12265-019-09899-w) contains supplementary material, which is available to authorized users.
Next to anticoagulation, pulmonary vein isolation (PVI) is the most important interventional procedure in the treatment of atrial fibrillation (AF). Despite widespread clinical application of this therapy, patients often require multiple procedures to reach clinical success. In contrast to conventional imaging modalities, MRI allows direct visualisation of the ablation lesion. Therefore, the use of real-time MRI to guide cardiac electrophysiology procedures may increase clinical effectiveness. An essential aspect, from a decision-making point of view, is the effect on costs and the potential cost-effectiveness of new technologies. Generally, health technology assessment (HTA) studies are performed when innovations are close to clinical application. However, early stage HTA can inform users, researchers and funders about the ultimate clinical and economic potential of a future innovation. Ultimately, this can guide funding allocation. In this study, we performed an early HTA evaluate MRI-guided PVIs.MethodsWe performed an economic evaluation using a decision tree with a time-horizon of 1 year. We calculated the clinical effectiveness (defined as the proportion of patients that is long-term free of AF after a single procedure) required for MRI-guided PVI to be cost-effective compared with conventional treatment.ResultsDepending on the cost-effectiveness threshold (willingness to pay for one additional quality-of-life adjusted life year (QALY), interventional MRI (iMRI) guidance for PVI can be cost-effective if clinical effectiveness is 69.8% (at €80 000/QALY) and 77.1% (at €20 000/QALY), compared with 64% for fluoroscopy-guided procedures.ConclusionUsing an early HTA, we established a clinical effectiveness threshold for interventional MRI-guided PVIs that can inform a clinical implementation strategy. If crucial technologies are developed, it seems plausible that iMRI-guided PVIs will be able to reach this threshold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.