SummaryIt has been postulated the brain is organized by “metamodal”, sensory-independent cortical modules implementing particular computations. Yet, evidence for this theory has been variable. We hypothesized that effective metamodal engagement requires not only an abstract, “cognitive” congruence between cross-modal stimuli but also a congruence between neural representations. To test this hypothesis, we trained participants to recognize vibrotactile versions of auditory words using two encoding schemes. The vocoded approach preserved the dynamics and representational similarities of auditory speech while the token-based approach used an abstract phoneme-based code. Although both groups learned the vibrotactile word recognition task, only in the vocoded group did trained vibrotactile stimuli recruit the auditory speech network and lead to increased coupling between somatosensory and auditory speech areas. In contrast, the token-based encoding appeared to rely on paired-associate learning. Thus, matching neural input representations is a critical factor for assessing and leveraging the metamodal potential of cortical modules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.