Density functional theory calculations were used in the theoretical investigation of the adsorption properties of sumanene towards molecules considered as common air pollutants: CO, CO₂ and NH₃. The insignificant perturbation of sumanene after adsorption and the adsorption energies obtained indicate a physisorption mechanism. It was shown that, contrary to carbon nanotubes, sumanene is able to adsorb CO molecules, and that adsorption of CO₂ by sumanene is stronger than adsorption of CO₂ by C₆₀. To better understand the adsorption characteristics of sumanene, density of states and natural bond order analyses were performed, which showed that chemical interactions exist and that these are more important mostly on the convex side. Better adsorption properties were obtained for the concave side as adsorption is dictated by physisorption mechanisms due to the specific bowl-shaped geometry of sumanene, because of which more negative charge is located precisely on the concave side. Molecular electrostatic potential surfaces were also used in order to better locate the adsorption sites and gain additional details about adsorption.
In the context of the macroscopic quantum phenomena of the second kind, we hereby seek for a solution-in-principle of the long standing problem of the polymer folding, which was considered by Levinthal as (semi)classically intractable. To illuminate it, we applied quantum-chemical and quantum decoherence approaches to conformational transitions. Our analyses imply the existence of novel macroscopic quantum biomolecular phenomena, with biomolecular chain folding in an open environment considered as a subtle interplay between energy and conformation eigenstates of this biomolecule, governed by quantum-chemical and quantum decoherence laws. On the other hand, within an open biological cell, a system of all identical (noninteracting and dynamically noncoupled) biomolecular proteins might be considered as corresponding spatial quantum ensemble of these identical biomolecular processors, providing spatially distributed quantum solution to a single corresponding biomolecular chain folding, whose density of conformational states might be represented as Hopfield-like quantum-holographic associative neural network too (providing an equivalent global quantum-informational alternative to standard molecular-biology local biochemical approach in biomolecules and cells and higher hierarchical levels of organism, as well).
The dispersion law, density states of phonons, thermodynamics properties and thermal conductivity was analyzed in this paper. It has been shown that at low temperatures, thermal conductivity of thin lm is considerably lower that of bulk-structure. It turned out that phonons in thin lm require activation energy for exciting. This leads to extremely low specic heat and specic conductivity at low temperatures. Consequences of quoted facts were discussed in detail and their inuence on kinetic and thermodynamic properties of thin lms is estimated.
Spectra of possible phonon states, as well as thermodynamic characteristics of nanocrystals (ultrathin film and quantum wire) of simple cubic crystalline structure are analyzed in this paper, using the method of two-time dependent Green functions. From energy spectra and internal energy of the system the thermal capacitance of these structures in low temperature region is found. The temperature behavior of specific heat is compared to that of corresponding bulk structure. It is shown that at extremely low temperatures thermal capacitance of quantum wire is considerably lower than the thermal capacitance of film as well as the bulk sample. Consequences of this fact are discussed in detail and its influence to thermodynamic properties of materials is estimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.