Abstract:Fatigue crack initiation and propagation behaviour in subsolvus heat treated turbine disc alloy N18 has been assessed in air and vacuum at 650 and 725 o C under three-point loading.Fatigue crack initiation processes have been evaluated using single edge U-notch specimens under a 1-1-1-1 trapezoidal loading waveform along with interrupted tests at 650 o C to allow intermittent observations of the notch surface. The results show apparent grain boundary (GB) oxidation can occur under an oxygen partial pressure of 10 -2~1 0 -3 Pa. Cracks mainly initiate from grain boundaries or γ/γʹ interfaces due to the formation and subsequent cracking of Crrich and/or Co-rich oxides, and occasionally initiate from surface pores. Fatigue life in these tests appears to be dominated by this crack initiation process and is significantly reduced by increasing temperature and/or application of an oxidizing environment. Crack growth tests conducted under 1-1-1-1 and 1-20-1-1 loading waveforms indicate that oxidation significantly degrades the crack growth resistance of N18 and is associated with more intergranular fracture surface features. Additional oxidation effects on propagation caused by higher temperature or prolonging dwell time appear limited, whereas a prolonged dwell period seems to instead promote additional creep process, which further enhance crack growth, especially at higher temperature.
The microstructure and fatigue performance of three sub-solvus heat treated nickel based disc superalloys for turbine disc applications are reported. The alloy variants studied are RR1000, N18 and Udimet 720 Low Interstitial (U720Li), with the latter tested both in a standard and large grain variant (LG). Their microstructures are examined in terms of grain and gamma prime size (γ'). Fatigue crack growth (FCG) rates for all materials at 650ºC show that RR1000 provides the best performance, followed by U720Li-LG, N18 and U720Li. Some of the variations in FCG rate between the alloys are due to reduction in grain boundary oxidation processes with increased grain size, but more subtle interplays between grain boundary character, alloy composition and slip character are also important.
Gas turbine disc materials should possess excellent fatigue and creep performance due to the severe in service conditions experienced. In this study, a comparison of fatigue crack propagation behaviour in two turbine disc alloys, i.e. N18 and low solvus high refractory (LSHR) superalloy, has been made in terms of the propagation rate and fractography observed under equivalent testing conditions. Temperatures of 650 and 725°C are compared for a trapezoidal dwell fatigue cycle (1–20–1–1) in both air and vacuum at an R ratio of 0·1. It is found that coarse grained LSHR superalloy has better fatigue crack propagation resistance than fine grained N18 in vacuum, which is ascribed to its better creep performance. Oxidation causes significant degradation of fatigue performance of these two alloys, especially in the LSHR superalloy at higher temperature (725°C), resulting in its inferior fatigue performance compared with N18. In the LSHR superalloy, it seems that oxidation is the principal contributor to the deterioration of fatigue resistance. This is supported by observations of transgranular fracture in vacuum and intergranular fracture in air. In contrast, creep is a greater contributor to the deterioration in fatigue performance of N18 (as indicated by the intergranular failure modes observed in vacuum). An apparent activation energy analysis is able to provide further insight into the underlying mechanisms of fatigue crack propagation under creep–oxidation–fatigue conditions in these two alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.