In this thesis, a negative permeability (μ) metasurface is used to reduce the mutual coupling of a 2-port Multiple-Input Multiple-Output (MIMO) rectangular inset fed microstrip antenna.That was designed using the transmission model of analysis, simulated and optimized using CST microwave studio. The microstrip antenna that operates at the (5.9-6.1) GHz band is designed for 5G applications, at the extended 6 GHz band (5.925-7.125) GHz. The extended band was chosen because of its new additional spectrum, which results in less noise interference. Three metasurface wall based antenna designs and two metasurface superstrate based antenna designs are conducted. The metasurface wall based antenna designs are formulated by placing a metasurface wall vertically between the two radiating antenna elements. The metasurface superstrate based antenna designs are formulated by suspending a metasurface superstrate above the 2-port microstrip antenna. Both the metasurface wall and superstrate are made up metasurface unit cells, which are formulated by periodic split ring resonators printed on a FR-4 dielectric substrate. The metasurface cells are responsible for introducing a negative permeability medium, which converts the electromagnetic propagating waves into evanescent hence rejecting mutual coupling.In the first metasurface based antenna design, a single metasurface wall is vertically placed between the two microstrip antenna elements. A slight increase of 0.5 dB in mutual coupling is observed. In the second design, a double metasurface wall is vertically placed between the two antenna elements. A mutual coupling reduction of 11 dB is achieved. In the third design a triple metasurface wall is also placed between the two antenna elements, a mutual coupling reduction of 25 dB and up to 17 % bandwidth enhancement is achieved. In the fourth design a single metasurface superstrate is suspended above the 2-port microstrip antenna. A mutual coupling reduction of 32 dB is achieved. Lastly, in the fifth design a metasurface superstrate is also suspended above the 2-port microstrip antenna. A mutual coupling reduction of 22 dB, a 38% bandwidth enhancement and a 2.09 dB gain enhancement is achieved.
Multiple-input multiple-output (MIMO) systems have several advantages, such as providing high capacity, spatial diversity, etc. MIMO antennas suffer with high mutual coupling (m-coupling) between the ports. In this paper, the metasurface with negative permeability (MNG) is designed and utilized for m-coupling reduction of a two-port rectangular microstrip MIMO antenna (Antenna 1). Two metasurface superstrate-based MIMO antennas with reduced m-coupling for fifth generation (5G) are proposed. The first design (Antenna 2) is constructed using a single metasurface superstrate suspended above the two-port MIMO microstrip antenna. The second design (Antenna 3) is constructed using a double metasurface superstrate layers suspended above the two-port MIMO microstrip antenna. Both metasurface-based MIMO antennas achieve significant m-coupling reduction over the entire bandwidth. The edge-to-edge separation between the two patches is 0.29λ0. The proposed Antenna 3 obtains the reduced m-coupling of −44 dB along with the wide bandwidth of 5.92−6.2 GHz and a maximum gain of 6.79 dB. The proposed antennas are suitable for extended sub-6 GHz 5G applications with the operating frequency band of 5.9–6.1 GHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.