There has been a considerable development in microfluidic based immunodiagnostics over the past few years which has greatly favored the growth of novel point-of-care-testing (POCT). However, the realization of an inexpensive, low-power POCT needs cheap and disposable microfluidic devices that can perform autonomously with minimum user intervention. This work, for the first time, reports the development of a new microchannel capillary flow assay (MCFA) platform that can perform chemiluminescence based ELISA with lyophilized chemiluminescent reagents. This new MCFA platform exploits the ultra-high sensitivity of chemiluminescent detection while eliminating the shortcomings associated with liquid reagent handling, control of assay sequence and user intervention. The functionally designed microchannels along with adequate hydrophilicity produce a sequential flow of assay reagents and autonomously performs the ultra-high sensitive chemiluminescence based ELISA for the detection of malaria biomarker such as PfHRP2. The MCFA platform with no external flow control and simple chemiluminescence detection can easily communicate with smartphone via USB-OTG port using a custom-designed optical detector. The use of the smartphone for display, data transfer, storage and analysis, as well as the source of power allows the development of a smartphone based POCT analyzer for disease diagnostics. This paper reports a limit of detection (LOD) of 8 ng/mL by the smartphone analyzer which is sensitive enough to detect active malarial infection. The MCFA platform developed with the smartphone analyzer can be easily customized for different biomarkers, so a hand-held POCT for various infectious diseases can be envisaged with full networking capability at low cost.
Temperature is one of the most important variables in brain monitoring, since changes of focal brain temperature are closely coupled to cerebral physiology and pathophysiological phenomena in injured brain. In this work, a highly accurate temperature sensor with polysilicon thermistors has been developed on flexible polyimide for monitoring brain temperature with high spatial resolution. The temperature sensors have a response time of 1.5 s and sensitivity of −0.0031 °C−1. Thermal hysteresis of the sensor in the physiological temperature range of 30–45 °C was found to be less than 0.1 °C. With silicon nitride as the passivation layer, the temperature sensor exhibits drift of less than 0.3 °C for 3 d in water. In vivo tests of the sensor show a low noise level of 0.025 ± 0.03 °C, and the expected transient increases in cortical temperature associated with cortical spreading depolarization. The temperature sensor developed in this work is suitable for monitoring brain temperature with the desired high sensitivity and resolution.
A specific double-stranded DNA sensing system is of great interest for diagnostic and other biomedical applications. Zinc finger domains, which recognize double-stranded DNA, can be engineered to form custom DNA-binding proteins for the recognition of specific DNA sequences. As a proof of concept, a sequence-enabled reassembly of a TEM-1 β-lactamase system (SEER-LAC) was previously demonstrated to develop zinc finger protein (ZFP) arrays for the detection of a double-stranded bacterial DNA sequence. Here, we implemented the SEER-LAC system to demonstrate the direct detection of pathogen-specific DNA sequences present in E. coli O157:H7 on a lab-on-a-chip. ZFPs custom-designed to detect Shiga toxin in E. coli O157:H7 were immobilized on a cyclic olefin copolymer (COC) chip, which can function as a non-PCR based molecular diagnostic device. Pathogen-specific double-stranded DNA was directly detected by using engineered ZFPs immobilized on the COC chip with high specificity, providing a detection limit of 10 fmol of target DNA in a colorimetric assay. Therefore, in this study, we demonstrated the great potential of ZFP arrays on the COC chip for further development of a simple and novel lab-on-a-chip technology for the detection of pathogens.
A new method towards successful lyophilization and reconstitution of chemiluminescent substrate while restoring the substrate functionality is reported in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.