This paper presents an automatic image segmentation method for polarimetric synthetic aperture radar data. It utilizes the full polarimetric information and incorporates texture by modeling with a non-Gaussian distribution for the complex scattering coefficients. The modeling is based upon the well-known product model, with a Gamma-distributed texture parameter leading to the K-Wishart model for the covariance matrix. The automatic clustering is achieved through a finite mixture model estimated with a modified expectation maximization algorithm. We include an additional goodness-of-fit test stage that allows for splitting and merging of clusters. This not only improves the model fit of the clusters, but also dynamically selects the appropriate number of clusters. The resulting image segmentation depicts the statistically significant clusters within the image. A key feature is that the degree of sub-sampling of the input image will affect the detail level of the clustering, revealing only the major classes or a variable level of detail. Real-world examples are shown to demonstrate the technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.