Celiac disease (CD) is an enteropathy triggered by the ingestion of gluten proteins from wheat and similar proteins from barley and rye. The inflammatory reaction is controlled by T cells that recognize gluten peptides in the context of human leukocyte antigen (HLA) DQ2 or HLA-DQ8 molecules. The only available treatment for the disease is a lifelong gluten-exclusion diet. We have used RNAi to down-regulate the expression of gliadins in bread wheat. A set of hairpin constructs were designed and expressed in the endosperm of bread wheat. The expression of gliadins was strongly down-regulated in the transgenic lines. Total gluten protein was extracted from transgenic lines and tested for ability to stimulate four different T-cell clones derived from the intestinal lesion of CD patients and specific for the DQ2-α-II, DQ2-γ-VII, DQ8-α-I, and DQ8-γ-I epitopes. For five of the transgenic lines, there was a 1.5-2 log reduction in the amount of the DQ2-α-II and DQ2-γ-VII epitopes and at least 1 log reduction in the amount of the DQ8-α-I and DQ8-γ-I epitopes. Furthermore, transgenic lines were also tested with two T-cell lines that are reactive with ω-gliadin epitopes. The total gluten extracts were unable to elicit T-cell responses for three of the transgenic wheat lines, and there were reduced responses for six of the transgenic lines. This work shows that the down-regulation of gliadins by RNAi can be used to obtain wheat lines with very low levels of toxicity for CD patients.RNAi | post-transcriptional gene silencing | gluten intolerance | celiac sprue
Celiac disease is associated with HLA-DQ2 and, to a lesser extent, HLA-DQ8. Type 1 diabetes is associated with the same DQ molecules in the opposite order and with possible involvement of trans-encoded DQ heterodimers. T cells that are reactive with gluten peptides deamidated by transglutaminase 2 and invariably restricted by DQ2 or DQ8 can be isolated from celiac lesions. We used intestinal T cells from celiac patients to map DQ2 and DQ8 epitopes within 2 representative gluten proteins, alpha-gliadin AJ133612 and gamma-gliadin M36999. For alpha-gliadin, DQ2- and DQ8-restricted T cells recognized deamidated peptides of 2 separate regions. For gamma-gliadin, DQ2- and DQ8-restricted T cells recognized deamidated peptides of the same region. Some gamma-gliadin peptides were recognized by T cells in the context of DQ2 or DQ8 when bound in exactly the same registers, but with different requirements for deamidation; deamidation at peptide position 4 (P4) was important for DQ2-restricted T cells, whereas deamidation at P1 and/or P9 was important for DQ8-restricted T cells. Peptides combining the DQ2 and DQ8 signatures could be presented by DQ2, DQ8, and trans-encoded DQ heterodimers. Our findings shed light on the basis for the HLA associations in celiac disease and type 1 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.