In this paper we introduce LDBC Graphalytics, a new industrial-grade benchmark for graph analysis platforms. It consists of six deterministic algorithms, standard datasets, synthetic dataset generators, and reference output, that enable the objective comparison of graph analysis platforms. Its test harness produces deep metrics that quantify multiple kinds of system scalability, such as horizontal/vertical and weak/strong, and of robustness, such as failures and performance variability. The benchmark comes with open-source software for generating data and monitoring performance. We describe and analyze six implementations of the benchmark (three from the community, three from the industry), providing insights into the strengths and weaknesses of the platforms. Key to our contribution, vendors perform the tuning and benchmarking of their platforms.
In the past decade, Graphics Processing Units have played an important role in the field of high-performance computing and they still advance new fields such as IoT, autonomous vehicles, and exascale computing. It is therefore important to understand how to extract performance from these processors, something that is not trivial. This survey discusses various optimization techniques found in 450 papers published in the last 14 years. We analyze the optimizations from different perspectives which shows that the various optimizations are highly interrelated, explaining the need for techniques such as auto-tuning.
The next generation of supercomputers will break the exascale barrier. Soon we will have systems capable of at least one quintillion (billion billion) floating-point operations per second (10 18 FLOPS). Tremendous amounts of work have been invested into identifying and overcoming the challenges of the exascale era. In this work, we present an overview of these efforts and provide insight into the important trends, developments, and exciting research opportunities in exascale computing. We use a three-stage approach in which we (1) discuss various exascale landmark studies, (2) use data-driven techniques to analyze the large collection of related literature, and (3) discuss eight research areas in depth based on influential articles. Overall, we observe that great advancements have been made in tackling the two primary exascale challenges: energy efficiency and fault tolerance. However, as we look forward, we still foresee two major concerns: the lack of suitable programming tools and the growing gap between processor performance and data bandwidth (i.e., memory, storage, networks). Although we will certainly reach exascale soon, without additional research, these issues could potentially limit the applicability of exascale computing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.