SummaryPseudomonas aeruginosa bacteriophage endolysins KZ144 (phage fKZ) and EL188 (phage EL) are highly lytic peptidoglycan hydrolases (210 000 and 390 000 units mg -1 ), active on a broad range of outer membrane-permeabilized Gram-negative species. Site-directed mutagenesis indicates E115 (KZ144) and E155 (EL188) as their respective essential catalytic residues. Remarkably, both endolysins have a modular structure consisting of an N-terminal substrate-binding domain and a predicted C-terminal catalytic module, a property previously only demonstrated in endolysins originating from phages infecting Gram-positives and only in an inverse arrangement. Both binding domains contain conserved repeat sequences, consistent with those of some peptidoglycan hydrolases of Gram-positive bacteria. Fusions of these domains with green fluorescent protein immediately label all outer membrane-permeabilized Gram-negative bacteria tested, isolated P. aeruginosa peptidoglycan and N-acetylated Bacillus subtilis peptidoglycan, demonstrating the broad range of peptidoglycan-binding capacity by these domains. Specifically, A1 chemotype peptidoglycan and fully N-acetylated glucosamine units are essential for binding. Both KZ144 and EL188 appear to be a natural chimeric enzyme, originating from a recombination of a cell wall-binding domain encoded by a Bacillus or Clostridium species and a catalytic domain of an unknown ancestor.
Xylooligosaccharides have strong bifidogenic properties and are increasingly used as a prebiotic. Nonetheless, little is known about the degradation of these substrates by bifidobacteria. We characterized two recombinant β-xylosidases, XylB and XylC, with different substrate specificities from Bifidobacterium adolescentis. XylB is a novel β-xylosidase that belongs to the recently introduced glycoside hydrolase family 120. In contrast to most reported β-xylosidases, it shows only weak activity on xylobiose and prefers xylooligosaccharides with a degree of polymerization above two. The remaining xylobiose is efficiently hydrolyzed by the second B. adolescentis β-xylosidase, XylC, a glycoside hydrolase of family 43. Furthermore, XylB releases more xylose from arabinose-substituted xylooligosaccharides than XylC (30% and 20%, respectively). The different specificities of XylB, XylC, and the recently described reducing-end xylose-releasing exo-oligoxylanase RexA show how B. adolescentis can efficiently degrade prebiotic xylooligosaccharides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.