Continuous crystallization in tubular crystallizers is of particular interest to the pharmaceutical industry to accurately control average particle size, particle size distribution, and (polymorphic) shape. However, these types of crystallizers require fast nucleation, and thus, short induction times at the beginning of the flow process, which is challenging for larger and complex organic molecules. High shear and/or the presence of bubbles were identified to influence the nucleation behavior. This work investigates the effects of both high-shear mixing and ultrasound on the anti-solvent crystallization of paracetamol in acetone-water. Both devices generate intense amounts of shear and gas bubbles. Generally, the results show that increasing input power decreases the induction time significantly for both the rotor-stator mixer and ultrasound probe. However, the induction time is almost independent of the supersaturation for the ultrasound probe, while the induction time significantly increases with decreasing supersaturation for the rotor-stator mixer. In contrast, the particle size distribution for the rotor-stator mixer is independent of the supersaturation, while increasing supersaturation decreases the particle size for the ultrasound probe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.