A packed-bed plug-flow reactor, denoted as the lab-scale liquid-solid (LS)² reactor, has been developed for the assessment of heterogeneous catalyst deactivation in liquid-phase reactions. The possibility to measure intrinsic kinetics was first verified with the model transesterification of ethyl acetate with methanol, catalyzed by the stable commercial resin Lewatit K2629, for which a turnover frequency (TOF) of 6.2 ± 0.4 × 10−3 s−1 was obtained. The absence of temperature and concentration gradients was verified with correlations and experimental tests. The potential for assessing the deactivation of a catalyst was demonstrated by a second intrinsic kinetics evaluation where a methylaminopropyl (MAP)-functionalized mesoporous silica catalyst was used for the aldol reaction of acetone with 4-nitrobenzaldehyde in different solvents. The cooperative MAP catalyst deactivated as a function of time on stream when using hexane as solvent. Yet, the monofunctional MAP catalyst exhibited stable activity for at least 4 h on stream, which resulted in a TOF of 1.2 ± 0.1 × 10−3 s−1. It did, however, deactivate with dry acetone or DMSO as solvent due to the formation of site-blocking species. This deactivation was mitigated by co-feeding 2 wt % of water to DMSO, resulting in stable catalyst activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.