The low rate of autograft failure demonstrates that the Ross procedure is an attractive option for the management of aortic valve disease and complex left ventricular outflow tract obstruction in the pediatric population. However, alternative options must be considered in adolescents and young adults.
Aims: Early prenatal diagnosis of congenital heart disease is feasible. Conventional autopsy is the current gold standard method for post-mortem confirmation. Radiologic techniques alternative to conventional autopsy, such as post-mortem micro-computed tomography, have been proposed in case of limited diagnostic accuracy (i.e., early termination of pregnancy, samples of small dimension or of low weight). The aim of the present study was to define accuracy of micro-computed tomography for post-mortem diagnosis of congenital heart disease in gross anatomy samples. Methods and Results: Fetal heart underwent in-utero prenatal echocardiography and ex-vivo post-mortem evaluation by 9 μm resolution micro-computed tomography and conventional autopsy. For each case, 25 indices of cardiac anatomy were studied by post-mortem micro-computed tomography and conventional autopsy; these were used to compare the two post mortem techniques. Ten samples were examined (gestational age between 12 + 4 and 21 + 6 weeks of gestation). Considering comparable indices, agreement between post-mortem micro-computed tomography and conventional autopsy was of 100% and sensitivity and specificity were of 100%. In “challenging specimens,” post-mortem micro-computed tomography diagnoses more indices as compared to conventional autopsy and 84% of “not-diagnostic” indices at conventional autopsy would be diagnostic at post-mortem micro-computed tomography. Conclusion: Micro-computed tomography can be a valid diagnostic alternative to conventional autopsy for post-mortem evaluation of human fetal heart. In addition, it may prove superior to conventional autopsy particularly in cases coming from early termination of pregnancy or in samples of small dimension or of low weight.
Cardiopulmonary bypass (CPB) in infants is associated with morbidity due to systemic inflammatory response syndrome (SIRS). Strategies to mitigate SIRS include management of perfusion temperature, hemodilution, circuit miniaturization, and biocompatibility. Traditionally, perfusion parameters have been based on body weight. However, intraoperative monitoring of systemic and cerebral metabolic parameters suggest that often, nominal CPB flows may be overestimated. The aim of the study was to assess the safety and efficacy of continuous metabolic monitoring to manage CPB in infants during open-heart repair. Between December 2013 and October 2014, 31 consecutive neonates, infants, and young children undergoing surgery using normothermic CPB were enrolled. There were 18 male and 13 female infants, aged 1.4 ± 1.7 years, with a mean body weight of 7.8 ± 3.8 kg and body surface area of 0.39 m(2) . The study was divided into two phases: (i) safety assessment; the first 20 patients were managed according to conventional CPB flows (150 mL/min/kg), except for a 20-min test during which CPB was adjusted to the minimum flow to maintain MVO2>70% and rSO2>45% (group A); (ii) efficacy assessment; the following 11 patients were exclusively managed adjusting flows to maintain MVO2>70% and rSO2>45% for the entire duration of CPB (group B). Hemodynamic, metabolic, and clinical variables were compared within and between patient groups. Demographic variables were comparable in the two groups. In group A, the 20-min test allowed reduction of CPB flows greater than 10%, with no impact on pH, blood gas exchange, and lactate. In group B, metabolic monitoring resulted in no significant variation of endpoint parameters, when compared with group A patients (standard CPB), except for a 10% reduction of nominal flows. There was no mortality and no neurologic morbidity in either group. Morbidity was comparable in the two groups, including: inotropic and/or mechanical circulatory support (8 vs. 1, group A vs. B, P = 0.07), reexploration for bleeding (1 vs. none, P = not significant [NS]), renal failure requiring dialysis (none vs. 1, P = NS), prolonged ventilation (9 vs. 4, P = NS), and sepsis (2 vs. 1, P = NS). The present study shows that normothermic CPB in neonates, infants, and young children can be safely managed exclusively by systemic and cerebral metabolic monitoring. This strategy allows reduction of at least 10% of predicted CPB flows under normothermia and may lay the ground for further tailoring of CPB parameters to individual patient needs.
Aortic arch repair in newborns and infants has traditionally been accomplished using a period of deep hypothermic circulatory arrest. To reduce neurologic and cardiac dysfunction related to circulatory arrest and myocardial ischemia during complex aortic arch surgery, an alternative and novel strategy for cerebro-myocardial protection was recently developed, where regional low-flow perfusion is combined with controlled and independent coronary perfusion. The aim of the present retrospective study was to assess short-term and mid-term results of selective and independent cerebro-myocardial perfusion in neonatal aortic arch surgery. From April 2008 to August 2015, 28 consecutive neonates underwent aortic arch surgery under cerebro-myocardial perfusion. There were 17 male and 11 female, with median age of 15 days (3-30 days) and median body weight of 3 kg (1.6-4.2 kg), 9 (32%) of whom with low body weight (<2.5 kg). The spectrum of pathologies treated was heterogeneous and included 13 neonates having single-stage biventricular repair (46%), 7 staged biventricular repair (25%), and 8 single-ventricle repair (29%). All operations were performed under moderate hypothermia and with a "beating heart and brain." Average cardiopulmonary bypass time was 131 ± 64 min (42-310 min). A period of cardiac arrest to complete intra-cardiac repair was required in nine patients (32%), and circulatory arrest in 1 to repair total anomalous pulmonary venous connection. Average time of splanchnic ischemia during cerebro-myocardial perfusion was 30 ± 11 min (15-69 min). Renal dysfunction, requiring a period of peritoneal dialysis was observed in 10 (36%) patients, while liver dysfunction was noted only in 3 (11%). There were three (11%) early and two late deaths during a median follow-up of 2.9 years (range 6 months-7.7 years), with an actuarial survival of 82% at 7 years. At latest follow-up, no patient showed signs of cardiac or neurologic dysfunction. The present experience shows that a strategy of selective and independent cerebro-myocardial perfusion is safe, versatile, and feasible in high-risk neonates with complex congenital arch pathology. Encouraging outcomes were noted in terms of cardiac and neurological function, with limited end-organ morbidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.