Through this extensive structure–property study we show that critical micelle concentration correlates with self‐associative hydrogen bond complex formation constant, when combined with outputs from low level, widely accessible, computational models. Herein, we bring together a series of 39 structurally related molecules related by stepwise variation of a hydrogen bond donor–acceptor amphiphilic salt. The self‐associative and corresponding global properties for this family of compounds have been studied in the gas, solid and solution states. Within the solution state, we have shown the type of self‐associated structure present to be solvent dependent. In DMSO, this class of compound show a preference for hydrogen bonded dimer formation, however moving into aqueous solutions the same compounds are found to form larger self‐associated aggregates. This observation has allowed us the unique opportunity to investigate and begin to predict self‐association events at both the molecular and extended aggregate level.
The co-formulation of supramolecular self-associating amphiphiles (SSAs) enhances solution state physicochemical properties and increases efficacy against methicillin-resistant Staphylococcus aureus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.