Due to their small size, nanoparticles have distinct properties compared with the bulk form of the same materials. These properties are rapidly revolutionizing many areas of medicine and technology. Despite the remarkable speed of development of nanoscience, relatively little is known about the interaction of nanoscale objects with living systems. In a biological fluid, proteins associate with nanoparticles, and the amount and presentation of the proteins on the surface of the particles leads to an in vivo response. Proteins compete for the nanoparticle ''surface,'' leading to a protein ''corona'' that largely defines the biological identity of the particle. Thus, knowledge of rates, affinities, and stoichiometries of protein association with, and dissociation from, nanoparticles is important for understanding the nature of the particle surface seen by the functional machinery of cells. Here we develop approaches to study these parameters and apply them to plasma and simple model systems, albumin and fibrinogen. A series of copolymer nanoparticles are used with variation of size and composition (hydrophobicity). We show that isothermal titration calorimetry is suitable for studying the affinity and stoichiometry of protein binding to nanoparticles. We determine the rates of protein association and dissociation using surface plasmon resonance technology with nanoparticles that are thiol-linked to gold, and through size exclusion chromatography of protein-nanoparticle mixtures. This method is less perturbing than centrifugation, and is developed into a systematic methodology to isolate nanoparticle-associated proteins. The kinetic and equilibrium binding properties depend on protein identity as well as particle surface characteristics and size.
Nanoparticles present enormous surface areas and are found to enhance the rate of protein fibrillation by decreasing the lag time for nucleation. Protein fibrillation is involved in many human diseases, including Alzheimer's, Creutzfeld-Jacob disease, and dialysis-related amyloidosis. Fibril formation occurs by nucleationdependent kinetics, wherein formation of a critical nucleus is the key rate-determining step, after which fibrillation proceeds rapidly. We show that nanoparticles (copolymer particles, cerium oxide particles, quantum dots, and carbon nanotubes) enhance the probability of appearance of a critical nucleus for nucleation of protein fibrils from human 2-microglobulin. The observed shorter lag (nucleation) phase depends on the amount and nature of particle surface. There is an exchange of protein between solution and nanoparticle surface, and 2-microglobulin forms multiple layers on the particle surface, providing a locally increased protein concentration promoting oligomer formation. This and the shortened lag phase suggest a mechanism involving surface-assisted nucleation that may increase the risk for toxic cluster and amyloid formation. It also opens the door to new routes for the controlled self-assembly of proteins and peptides into novel nanomaterials.amyloid ͉ nanotoxicology ͉ surface-assisted nucleation
Copolymeric NiPAM:BAM nanoparticles of varying hydrophobicity were found to retard fibrillation of the Alzheimer's disease-associated amyloid beta protein (Abeta). We found that these nanoparticles affect mainly the nucleation step of Abeta fibrillation. The elongation step is largely unaffected by the particles, and once the Abeta is nucleated, the fibrillation process occurs with the same rate as in the absence of nanoparticles. The extension of the lag phase for fibrillation of Abeta is strongly dependent on both the amount and surface character of the nanoparticles. Surface plasmon resonance studies show that Abeta binds to the nanoparticles and provide rate and equilibrium constants for the interaction. Numerical analysis of the kinetic data for fibrillation suggests that binding of monomeric Abeta and prefibrillar oligomers to the nanoparticles prevents fibrillation. Moreover, we find that fibrillation of Abeta initiated in the absence of nanoparticles can be reversed by addition of nanoparticles up to a particular time point before mature fibrils appear.
Nanoparticles in biological fluids almost invariably become coated with proteins that may confer nanomedical and nanotoxicological effects. Understanding these effects requires quantitative measurements using simple systems. Adsorption of HSA to copolymer nanoparticles of varying hydrophobicity and curvature was studied using ITC, yielding stoichiometry, affinity, and enthalpy changes upon binding. The hydrophobicity was controlled via the co-monomer ratio, N-iso-propylacrylamide/N-tert-butylacrylamide. The most hydrophobic particles become fully covered with a single layer of protein, except at high curvature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.